Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Mori domain
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Mori_domain
http://dbpedia.org/ontology/abstract In algebra, a Mori domain, named after YosIn algebra, a Mori domain, named after Yoshiro Mori by Querré , is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domains both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed. A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain.e a Mori (or, equivalently, Krull) domain.
http://dbpedia.org/ontology/wikiPageExternalLink http://ci.nii.ac.jp/naid/110000160304/en + , https://books.google.com/books%3Fid=0tuZkZE07TEC + , https://books.google.com/books/about/Cours_d_alg%C3%A8bre.html%3Fid=X1LQAAAAMAAJ + , http://projecteuclid.org/euclid.kjm/1250777561%7C +
http://dbpedia.org/ontology/wikiPageID 35957282
http://dbpedia.org/ontology/wikiPageLength 2794
http://dbpedia.org/ontology/wikiPageRevisionID 1012312662
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Commutative_algebra + , http://dbpedia.org/resource/Noetherian_domain + , http://dbpedia.org/resource/Canadian_Journal_of_Mathematics + , http://dbpedia.org/resource/Yoshiro_Mori_%28mathematician%29 + , http://dbpedia.org/resource/Ascending_chain_condition + , http://dbpedia.org/resource/Completely_integrally_closed + , http://dbpedia.org/resource/Complete_integral_closure + , http://dbpedia.org/resource/Krull_domain + , http://dbpedia.org/resource/Integral_domain + , http://dbpedia.org/resource/Divisorial_ideal +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:%21 + , http://dbpedia.org/resource/Template:Distinguish + , http://dbpedia.org/resource/Template:Citation + , http://dbpedia.org/resource/Template:Harvs +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Commutative_algebra +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Domain +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Mori_domain?oldid=1012312662&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Mori_domain +
owl:differentFrom http://dbpedia.org/resource/Mori_Domain_%28disambiguation%29 +
owl:sameAs http://www.wikidata.org/entity/Q6912121 + , http://dbpedia.org/resource/Mori_domain + , http://rdf.freebase.com/ns/m.0jwtp5w + , https://global.dbpedia.org/id/4rpwZ +
rdf:type http://dbpedia.org/ontology/Protein +
rdfs:comment In algebra, a Mori domain, named after YosIn algebra, a Mori domain, named after Yoshiro Mori by Querré , is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domains both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed. A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain.e a Mori (or, equivalently, Krull) domain.
rdfs:label Mori domain
hide properties that link here 
http://dbpedia.org/resource/Mori_Domain + http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/resource/Glossary_of_commutative_algebra + , http://dbpedia.org/resource/Fractional_ideal + , http://dbpedia.org/resource/Yoshiro_Mori_%28mathematician%29 + , http://dbpedia.org/resource/Mori_Domain + , http://dbpedia.org/resource/Mori_ring + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Mori_domain + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Mori_domain + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.