Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Introduction to quantum mechanics
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Introduction_to_quantum_mechanics
http://dbpedia.org/ontology/abstract هذا المقال هو مقدمة غير تقنية للوصول لهذا هذا المقال هو مقدمة غير تقنية للوصول لهذا الموضوع، ولقراءة المقال الرئيسي راجع ميكانيكا الكم. ميكانيكا الكم هي مجموعة من المبادئ العلمية التي تفسر سلوك المادة وتفاعلاتها مع الطاقة على مقياس الذرات والجسيمات دون الذرية. توضح الفيزياء التقليدية دراسة المادة والطاقة بالعين المجردة المستوى على نطاق مألوف لتجربة إنسانية بما في ذلك سلوك الأجسام الفلكية. لكنها تبقى المفتاح الأساسي لقياس الكثير من العلوم والتكنولوجيا الحديثة؛ ومع ذلك في نهاية القرن 19 اكتشف العلماء ظواهر في العوالم الماكروية (الكبيرة) والمايكروية (متناهية الصغر) لم تتمكن الفيزياء التقليدية من تفسيرها فسّر توماس صامويل كون في تحليله لفلسفة العلم، أن «بنية الثورات العلمية» التي تُذكر في إطار هذه الحدود قادت إلى ثورتين عظميين في الفيزياء، ما خلق تحولاً في النموذج العلمي الأصلي: وهما نظرية النسبية وتطوّر ميكانيكا الكم توضّح هذه المقالة كيف اكتشف الفيزيائيون قيود الفيزياء التقليدية وكيف طوروا مفاهيم نظرية الكم التي حلّت محلها في العقود الأولى من القرن العشرين. وصفت هذه المفاهيم الترتيب الذي اكتشفت فيه. قد تبدو بعض جوانب ميكانيكا الكم متناقضة أو غير منطقية وذلك لأنها تصف سلوكا مختلفا للغاية وفي حين تعد الفيزياء الكلاسيكية مقاربة ممتازة للواقع ويعتبر ريتشارد فيمان أن ميكانيكا الكم تتعامل مع«الطبيعة وكأنها عبثية». [2]تتصرف أنواع عديدة من الطاقة مثل الفوتونات (وحدات ضوئية منفصلة) كالجسيمات من ناحية وكالأمواج من ناحية أخرى. مشعات الفوتونات (كضوء النيون) لها طيف انبعاث منفصل فقط في حالة وجود ترددات معينة من الضوء، تتنبأ الميكانيكا الكمية بالطاقات والألوان والكثافة الطيفية لجميع أشكال الإشعاع الكهرومغناطيسي يعني بذلك مبدأ الشك للميكانيكا الكمية وبه يمكن تحديد أقرب خاصية للقياس (كموقع الجسيم) ويجب أن يكون أقل دقة لقياس خاصية أخرى تتعلق بالجسيم نفسه (كزخم حركته).وماهو أكثر إثارةً للقلق؟ هو أنه يمكن خلق أزواج من الجسيمات «كتوأم متشابك،» كما هو موصوف مفصلا في مقال التشابك الكمي تظهر الجسيمات المتشابكة ما أسماه انسترين «فعل عصبي على بعد مسافة» فالتشابه بين الحالتين أن الفيزياء الكلاسيكية تصر على أن يكون عشوائيا حتى لو أن المسافة وسرعة الضوء تؤكدان على أن عدم اعتبار أي علاقة سببية فيزيائية لهذه العلاقات المتبادلة.قة سببية فيزيائية لهذه العلاقات المتبادلة. , La mécanique quantique est la science de lLa mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes. Elle reste fondamentale pour tout ce qui concerne les mesures physiques pour la science moderne et la technologie. Mais à la fin du XIXe siècle, les scientifiques ont découvert des phénomènes que la physique classique ne pouvait expliquer, tant à l'échelle macroscopique que microscopique. Comme l'explique Thomas Kuhn dans son analyse sur la philosophie des sciences, La Structure des révolutions scientifiques, la compréhension de ces paradoxes a donné lieu à deux révolutions majeures en physique qui ont changé le paradigme de la science : la théorie de la relativité et le développement de la mécanique quantique. Cet article décrit comment les physiciens ont découvert les limitations de la physique classique et développé les principaux concepts de la théorie quantique qui l'ont remplacée dans les premières décennies du XXe siècle. Ces concepts sont globalement décrits dans l'ordre de leur découverte. Pour une description plus détaillée, voir l'Histoire de la mécanique quantique. En physique, le mot « quantum » désigne la quantité minimale de toute entité physique impliquée dans une interaction. Certaines caractéristiques de la matière ne peuvent prendre que certaines valeurs précises, elles sont dites « discrètes ». La lumière se comporte parfois comme des particules, parfois comme des ondes. La matière, composée de particules telles que les électrons et les atomes, présente aussi des comportements duaux. Certaines sources de lumière, comme les lampes néon, émettent uniquement sur certaines longueurs d'onde. La mécanique quantique montre que la lumière, comme les autres formes de rayonnement électromagnétique, est composée d'éléments discrets appelés « photons » ; elle est capable de prédire les énergies, les couleurs et les intensités de son spectre. Certains aspects de la mécanique quantique peuvent sembler contraires à la logique, et même paradoxaux, du fait qu'ils décrivent des phénomènes très différents de ce que l'on peut observer à des échelles plus grandes. Selon Richard Feynman, la mécanique quantique traite de « la Nature telle qu'elle est : absurde ». Par exemple, le principe d'incertitude énonce que plus on mesure précisément une caractéristique d'une particule (disons sa position), moins sera précise toute autre mesure de cette même particule (comme sa quantité de mouvement).articule (comme sa quantité de mouvement). , Mecânica quântica (ou teoria quântica) é uMecânica quântica (ou teoria quântica) é um ramo da física que lida com o comportamento da matéria e da energia na escala de átomos e partículas subatômicas. A mecânica quântica é fundamental ao nosso entendimento de todas as forças fundamentais da natureza, exceto a gravidade. A mecânica quântica é a base de diversos ramos da física, incluindo eletromagnetismo, física de partículas, física da matéria condensada, e até mesmo partes da cosmologia. A mecânica quântica também é essencial para a teoria das ligações químicas (e portanto de toda química), biologia estrutural, e tecnologias como a eletrônica, tecnologia da informação, e nanotecnologia. Um século de experimentos e trabalho na física aplicada provou que a mecânica quântica está correta e tem utilidades práticas. A mecânica quântica começou no início do século XX, com o trabalho pioneiro de Max Planck e Niels Bohr. Max Born criou o termo "mecânica quântica" em 1924. A comunidade de física logo aceitou a mecânica quântica devido a sua grande precisão nas previsões empíricas, especialmente em sistemas onde a mecânica clássica falha. Um grande sucesso da mecânica quântica em seu princípio foi a explicação da dualidade onda-partícula, ou seja, como em níveis subatômicos o que os humanos vieram a chamar de partículas subatômicas têm propriedades de ondas e o que era considerado onda tem propriedade corpuscular. A mecânica quântica também pode ser aplicada a uma gama muito maior de situações do que a relatividade geral, como por exemplo sistemas nos quais a escala é atômica ou menor, e aqueles que têm energias muito baixas ou muito altas ou sujeitos às menores temperaturas.altas ou sujeitos às menores temperaturas. , Mekanika kuantum adalah sains benda sangatMekanika kuantum adalah sains benda sangat kecil. Ilmu ini mempelajari sifat zat dan interaksinya dengan energi pada skala atom dan partikel subatomik. Kebalikannya, fisika klasik hanya menjelaskan zat dan energi pada skala yang familiar dengan manusia, termasuk perilaku benda astronomi seperti Bulan. Fisika klasik masih banya digunakan pada sains dan teknologi modern. Namun, di akhir abad ke-19, para ilmuwan menemukan fenomena pada benda besar berskala makro dan benda kecil (mikro) yang fisika klasik tidak dapat menjelaskannya. Akibat keterbatasan ini muncullah 2 revolusi besar pada bidang fisika yang menyebabkan perubahan paradigma sains pada awalnya: teori relativitas dan pengembangan mekanika kuantum. Artikel ini menjelaskan bagaimana fisikawan menemukan keterbatasan fisika klasik dan menjelaskan konsep utama teori kuantum yang menggantikannya di awal abad ke-20. Konsep ini dijelaskan dengan urutan kapan pertama kali ditemukan. Untuk sejarah yang lebih jelas mengenai subjek-subjeknya, lihat . Cahaya berperilaku dalam beberapa hal seperti partikel dan dalam hal lain seperti gelombang. Zat - partikel seperti elektron dan atom - juga berperilaku seperti gelombang juga. Beberapa sumber cahaya, seperti , hanya melepaskan beberapa frekuensi cahaya tertentu. Mekanika kuantum menunjukkan bahwa cahaya, seperti bentuk radiasi elektromagnetik lainnya, berbentuk satuan diskret, disebut foton, dan memprediksi energinya, warnanya, dan spektrumnya. Karena belum pernah ada yang meneliti lebih kecil dari foton, sebuah foton disebut kuantum, atau jumlah paling kecil yang dapat diamati, medan elektromagnetiknya. Lebih luasnya, mekanika kuantum menunjukkan bahwa banyak besaran, seperti momentum sudut yang terlihat kontinu pada penglihatan skala besar (zoom-out) di mekanika klasik, akan menjadi kuantisasi (pada skala kecil mekanika kuantum). Momentum sudut membutuhkan sekelompok nilai diskret yang diijinkan, dan karena jarak antara nilai ini sangat kecil, maka diskontinuitasnya hanya terlihat pada skala atomik. Banyak aspek mekanika kuantum yang tidak sejalan dengan intuisi dan terlihat paradoks, karena ilmu ini menjelaskan perilaku yang agak berbeda dari sesuatu yang terlihat pada skala yang lebih besar. Menurut fisikawan kuantum Richard Feynman, mekanika kuantum mempelajari "alam sebagai Perempuan– absurd". Contohnya, prinsip ketidakpastian mekanika kuantum berarti semakin seseorang mencoba untuk mengukur sesuatu (seperti posisi sebuah partikel), maka pengukuran yang lain (seperti momentumnya) akan semakin tidak akurat.ti momentumnya) akan semakin tidak akurat. , 量子力学(英語:quantum mechanics;或称量子论)是描述微观物质(原子量子力学(英語:quantum mechanics;或称量子论)是描述微观物质(原子、亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(电磁相互作用、强相互作用、弱相互作用)的基础。 量子力学是许多物理学分支的基础,包括电磁学、粒子物理、凝聚态物理以及宇宙学的部分内容。量子力学也是化学键理论、结构生物学以及电子学等学科的基础。 量子力學主要是用來描述微觀下的行為,所描述的粒子現象無法精確地以古典力學詮釋。例如:根據哥本哈根詮釋,一個粒子在被觀測之前,不具有任何物理性質,然而被觀測之後,依測量儀器而定,可能觀測到其粒子性質,也可能觀測到其波動性質,或者觀測到一部分粒子性質一部分波動性質,此即波粒二象性。 量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。 , Quantum mechanics is the study of matter aQuantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to two major revolutions in physics that created a shift in the original scientific paradigm: the theory of relativity and the development of quantum mechanics. This article describes how physicists discovered the limitations of classical physics and developed the main concepts of the quantum theory that replaced it in the early decades of the 20th century. It describes these concepts in roughly the order in which they were first discovered. For a more complete history of the subject, see History of quantum mechanics. Light behaves in some aspects like particles and in other aspects like waves. Matter—the "stuff" of the universe consisting of particles such as electrons and atoms—exhibits wavelike behavior too. Some light sources, such as neon lights, give off only certain specific frequencies of light, a small set of distinct pure colors determined by neon's atomic structure. Quantum mechanics shows that light, along with all other forms of electromagnetic radiation, comes in discrete units, called photons, and predicts its spectral energies (corresponding to pure colors), and the intensities of its light beams. A single photon is a quantum, or smallest observable particle, of the electromagnetic field. A partial photon is never experimentally observed. More broadly, quantum mechanics shows that many properties of objects, such as position, speed, and angular momentum, that appeared continuous in the zoomed-out view of classical mechanics, turn out to be (in the very tiny, zoomed-in scale of quantum mechanics) quantized. Such properties of elementary particles are required to take on one of a set of small, discrete allowable values, and since the gap between these values is also small, the discontinuities are only apparent at very tiny (atomic) scales. Many aspects of quantum mechanics are counterintuitive and can seem paradoxical because they describe behavior quite different from that seen at larger scales. In the words of quantum physicist Richard Feynman, quantum mechanics deals with "nature as She is—absurd". One principal "paradox" is the apparent inconsistency between Newton's laws and quantum mechanics which can be explained using Ehrenfest's theorem, which shows that the average values obtained from quantum mechanics (e.g. position and momentum) obey classical laws. However, Ehrenfest's theorem is far from capable of explaining all the counterintuitive phenomena (quantum weirdness) that have been observed, but rather is a mathematical expression of the correspondence principle. For example, the uncertainty principle of quantum mechanics means that the more closely one pins down one measurement (such as the position of a particle), the less accurate another complementary measurement pertaining to the same particle (such as its speed) must become. Another example is entanglement, in which a measurement of any two-valued state of a particle (such as light polarized up or down) made on either of two "entangled" particles that are very far apart causes a subsequent measurement on the other particle to always be the other of the two values (such as polarized in the opposite direction). A final example is superfluidity, in which a container of liquid helium, cooled down to near absolute zero in temperature spontaneously flows (slowly) up and over the opening of its container, against the force of gravity.s container, against the force of gravity. , 양자역학은 매우 작은, 특히 양자에 대한 것에 대한 과학으로, 원자와 기본입양자역학은 매우 작은, 특히 양자에 대한 것에 대한 과학으로, 원자와 기본입자의 규모에서 물질의 거동과 에너지와의 상호작용에 대해 설명한다. 대조적으로 고전물리학은 오로지 인간 경험을 통해 익숙한 규모에 대해서만 설명하는데, 예시로는 달과 같은 천체의 움직임 등이 있다. 고전 물리학은 현대 과학과 기술에서 여전히 사용되고 있다. 그러나 19세기 말에 과학자들은 큰 규모(거시규모)와 작은 규모(미시규모)의 세계에서 고전물리학으로 설명할 수 없는 현상을 발견하였다. 관측된 현상과 고전 이론의 불일치를 해결하고 싶은 욕망은 상대성이론과 양자역학의 발전이라는 물리분야의 큰 변혁을 일으켰고, 기존의 과학적 사고관을 변화시켰다. 이 문서는 20세기의 처음 수십년동안 물리학자들이 어떻게 고전물리학의 한계를 발견하고 고전물리학을 대체할 양자역학의 주요 개념을 발전시켰는지에 대해서 설명한다. 이러한 업적에 대한 더 완벽한 역사는 양자역학의 역사문서에 있다. 빛은 어떤 측면에서는 입자처럼 행하고 다른 측면에서는 파동처럼 행동한다. 물질(전자나 원자같은 입자들로 이루어진 우주의 "어떠한 것들")또한 파동같은 행동을 보인다. 네온 사인과 같은 몇몇 광원은 특정한 주파수의 빛만 방출한다. 양자역학은 이러한 빛이 전자기복사이면서 독립적인 단위인 광자임을 보여주고, 그 빛의 에너지, 색깔, 스펙트럼의 세기를 예측한다. 하나의 광자는 전자기장의 관측 가능한 가장 작은 양인 양자이다. 왜냐하면 부분적인 광자는 관측된 적이 없기 때문이다. 더 나아가서, 큰 규모의 고전역학에서는 연속적으로 보였던 각운동량 같은 물리량들이, 작고 확대된 규모의 양자역학에서는 양자화 된 것으로 밝혀졌다. 각 운동량은 따로 떨어져 있는 허락된 값들 가운데 하나만 가질 수 있고, 값들 사이의 간격은 매우 작아서 원자 수준에서야 불연속성이 드러난다. 양자역학의 많은 부분들은 직관적이지 못하고 , 역설적으로 보일 수 있다. 왜냐하면 양자역학은 눈에 보이는 규모의 현상과는 많이 다른 현상들을 설명해야하기 때문이다. 양자물리학자 리처드 파인만의 말에 따르자면, 양자 역학은 "자연을 터무니 없는 그 자체로 다룬다("nature as She is – absurd")". 예를 들어, 양자역학의 불확정성의 원리는 측정도구를 한 점에 가까이 다가가게 할수록 (입자의 위치), 같은 입자의 다른 관련된 측정(운동량)이 덜 정확해야함을 의미한다.위치), 같은 입자의 다른 관련된 측정(운동량)이 덜 정확해야함을 의미한다.
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Max_Planck_1878.gif?width=300 +
http://dbpedia.org/ontology/wikiPageExternalLink http://cds.cern.ch/record/1062647/files/RevModPhys.21.425.pdf + , http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld1_E/MicroWorld_1_E.html + , https://www.compadre.org/quantum/%3F + , https://archive.org/details/neutronopticsint0000sear + , https://demonstrations.wolfram.com/TimeEvolutionOfAWavepacketInASquareWell/ + , https://www.chem1.com/acad/webtext/atoms/ + , https://archive.org/details/in.ernet.dli.2015.212027 + , http://www.sixtysymbols.com/videos/quantum_mechanics.htm%7Cwork=Sixty + , https://archive.org/details/introducingquant00mcev + , https://archive.org/details/introductoryquan00libo + , https://galileo.phys.virginia.edu/classes/252/Bohr_Atom/Bohr_Atom.html + , https://archive.org/details/readingsinphilos00feig + , https://archive.org/details/foundationsofphy00lind + , https://web.archive.org/web/20111125050834/http:/intro.phys.psu.edu/class/251Labs/10_Interference_%26_Diffraction/Single_and_Double-Slit_Interference.pdf + , https://archive.org/details/physicsphilosoph00heis + , https://books.google.com/books%3Fid=SELS0HbIhjYC&q=Wave%2Bfunction%2Bcollapse&pg=PA200 + , http://hyperphysics.phy-astr.gsu.edu/hbase/quacon.html%23quacon +
http://dbpedia.org/ontology/wikiPageID 2796131
http://dbpedia.org/ontology/wikiPageLength 99383
http://dbpedia.org/ontology/wikiPageRevisionID 1120064882
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Born_rule + , http://dbpedia.org/resource/Bohr_radius + , http://dbpedia.org/resource/Rayleigh%E2%80%93Jeans_law + , http://dbpedia.org/resource/Molecular_orbital + , http://dbpedia.org/resource/Reviews_of_Modern_Physics + , http://dbpedia.org/resource/Philosophy_of_physics + , http://dbpedia.org/resource/Matter + , http://dbpedia.org/resource/Nobel_Prize_in_Physics + , http://dbpedia.org/resource/Renormalization + , http://dbpedia.org/resource/Copenhagen_interpretation + , http://dbpedia.org/resource/Hydrogen + , http://dbpedia.org/resource/Louis_Paschen + , http://dbpedia.org/resource/Electromagnetism + , http://dbpedia.org/resource/Wolfgang_Pauli + , http://dbpedia.org/resource/Quantum_weirdness + , http://dbpedia.org/resource/Max_Born + , http://dbpedia.org/resource/Werner_Heisenberg + , http://dbpedia.org/resource/Periodic_table + , http://dbpedia.org/resource/Complementarity_%28physics%29 + , http://dbpedia.org/resource/Matrix_mechanics + , http://dbpedia.org/resource/File:Einstein_patentoffice.jpg + , http://dbpedia.org/resource/Microscopic_scale + , http://dbpedia.org/resource/Algebra + , http://dbpedia.org/resource/Atomic_theory + , http://dbpedia.org/resource/Gravitation + , http://dbpedia.org/resource/Richard_Feynman + , http://dbpedia.org/resource/HyperPhysics + , http://dbpedia.org/resource/Speed_of_light + , http://dbpedia.org/resource/Electromagnetic_field + , http://dbpedia.org/resource/Quantum_chromodynamics + , http://dbpedia.org/resource/Planck%27s_law + , http://dbpedia.org/resource/Weak_interaction + , http://dbpedia.org/resource/Orders_of_magnitude_%28length%29 + , http://dbpedia.org/resource/Light_switch + , http://dbpedia.org/resource/Laser + , http://dbpedia.org/resource/Atomic_nucleus + , http://dbpedia.org/resource/Category:Articles_containing_video_clips + , http://dbpedia.org/resource/George_Eugene_Uhlenbeck + , http://dbpedia.org/resource/Physicist + , http://dbpedia.org/resource/Uniform_circular_motion + , http://dbpedia.org/resource/Trigonometry + , http://dbpedia.org/resource/Doublet_%28physics%29 + , http://dbpedia.org/resource/Electromagnetic_radiation + , http://dbpedia.org/resource/Local_realism + , http://dbpedia.org/resource/Physics_Today + , http://dbpedia.org/resource/File:Broglie_Big.jpg + , http://dbpedia.org/resource/Physical_Review + , http://dbpedia.org/resource/Gauge_theory + , http://dbpedia.org/resource/Paradox + , http://dbpedia.org/resource/Neon_lighting + , http://dbpedia.org/resource/File:Hot_metalwork.jpg + , http://dbpedia.org/resource/Paul_Dirac + , http://dbpedia.org/resource/Mass%E2%80%93energy_equivalence + , http://dbpedia.org/resource/Planck%27s_constant + , http://dbpedia.org/resource/Electronics + , http://dbpedia.org/resource/Einstein%27s_thought_experiments + , http://dbpedia.org/resource/Displacement_current + , http://dbpedia.org/resource/Virtual_particles + , http://dbpedia.org/resource/Magnetic_force + , http://dbpedia.org/resource/Spectrum + , http://dbpedia.org/resource/Momentum + , http://dbpedia.org/resource/Quantum_entanglement + , http://dbpedia.org/resource/File:Max_Planck_1878.GIF + , http://dbpedia.org/resource/File:Niels_Bohr_-_LOC_-_ggbain_-_35303.jpg + , http://dbpedia.org/resource/Balmer_series + , http://dbpedia.org/resource/Gravity + , http://dbpedia.org/resource/Johann_Balmer + , http://dbpedia.org/resource/Strong_force + , http://dbpedia.org/resource/Coulomb_constant + , http://dbpedia.org/resource/Augustin_Fresnel + , http://dbpedia.org/resource/Quantization_%28physics%29 + , http://dbpedia.org/resource/File:Niels_Bohr_Institute_1.jpg + , http://dbpedia.org/resource/Standing_wave + , http://dbpedia.org/resource/Diode + , http://dbpedia.org/resource/Brian_Cox_%28physicist%29 + , http://dbpedia.org/resource/Superfluidity + , http://dbpedia.org/resource/Spin_%28physics%29 + , http://dbpedia.org/resource/Bell_inequalities + , http://dbpedia.org/resource/American_Journal_of_Physics + , http://dbpedia.org/resource/File:Single_slit_and_double_slit2.jpg + , http://dbpedia.org/resource/Refraction + , http://dbpedia.org/resource/Multiverse + , http://dbpedia.org/resource/Absolute_zero + , http://dbpedia.org/resource/Energy + , http://dbpedia.org/resource/Emission_spectrum + , http://dbpedia.org/resource/Antimatter + , http://dbpedia.org/resource/File:RWP-comparison.svg + , http://dbpedia.org/resource/Frequency + , http://dbpedia.org/resource/Flash_memory + , http://dbpedia.org/resource/Wave + , http://dbpedia.org/resource/Giancarlo_Ghirardi + , http://dbpedia.org/resource/Maxwell%27s_equations + , http://dbpedia.org/resource/Joseph_Henry_Press + , http://dbpedia.org/resource/Kinetic_energy + , http://dbpedia.org/resource/N._David_Mermin + , http://dbpedia.org/resource/Feynman_diagram + , http://dbpedia.org/resource/Standard_Model + , http://dbpedia.org/resource/List_of_textbooks_on_classical_mechanics_and_quantum_mechanics + , http://dbpedia.org/resource/Richard_Hammond_%28physicist%29 + , http://dbpedia.org/resource/Particle_physics + , http://dbpedia.org/resource/Elementary_particles + , http://dbpedia.org/resource/EPR_paradox + , http://dbpedia.org/resource/Pauli_exclusion_principle + , http://dbpedia.org/resource/Magnetic_field + , http://dbpedia.org/resource/Electromagnetic_interaction + , http://dbpedia.org/resource/Wilhelm_Wien + , http://dbpedia.org/resource/Correspondence_principle + , http://dbpedia.org/resource/Albert_Einstein + , http://dbpedia.org/resource/Ralph_Kronig + , http://dbpedia.org/resource/Jeff_Forshaw + , http://dbpedia.org/resource/Matrix_%28mathematics%29 + , http://dbpedia.org/resource/Helium + , http://dbpedia.org/resource/Corpuscular_theory_of_light + , http://dbpedia.org/resource/Many-worlds_interpretation + , http://dbpedia.org/resource/Rydberg_formula + , http://dbpedia.org/resource/Classical_physics + , http://dbpedia.org/resource/Electron_microscope + , http://dbpedia.org/resource/Mnemonic + , http://dbpedia.org/resource/Infrared + , http://dbpedia.org/resource/Thermal_radiation + , http://dbpedia.org/resource/Magnetic_Resonance_Imaging + , http://dbpedia.org/resource/Philosophical_Library + , http://dbpedia.org/resource/Magnetic_moment + , http://dbpedia.org/resource/File:Photoelectric_effect_in_a_solid_-_diagram.svg + , http://dbpedia.org/resource/Transistor + , http://dbpedia.org/resource/Wave_function + , http://dbpedia.org/resource/Lamb_shift + , http://dbpedia.org/resource/Quantum + , http://dbpedia.org/resource/Roland_Omn%C3%A8s + , http://dbpedia.org/resource/Work_function + , http://dbpedia.org/resource/Diffraction + , http://dbpedia.org/resource/Thomas_Young_%28scientist%29 + , http://dbpedia.org/resource/Sunburn + , http://dbpedia.org/resource/Virtual_particle + , http://dbpedia.org/resource/Theory_of_relativity + , http://dbpedia.org/resource/Erwin_Schr%C3%B6dinger + , http://dbpedia.org/resource/James_Clerk_Maxwell + , http://dbpedia.org/resource/Special_relativity + , http://dbpedia.org/resource/Angular_momentum + , http://dbpedia.org/resource/Max_Planck + , http://dbpedia.org/resource/Antielectron + , http://dbpedia.org/resource/Potential_well + , http://dbpedia.org/resource/History_of_quantum_mechanics + , http://dbpedia.org/resource/Black-body_radiation + , http://dbpedia.org/resource/Scientific_paradigm + , http://dbpedia.org/resource/Large_Hadron_Collider + , http://dbpedia.org/resource/Intensity_%28physics%29 + , http://dbpedia.org/resource/Electromagnetic_force + , http://dbpedia.org/resource/Hydrogen_spectrum + , http://dbpedia.org/resource/Photon + , http://dbpedia.org/resource/Heinrich_Hertz + , http://dbpedia.org/resource/The_Quantum_Universe + , http://dbpedia.org/resource/Probability_amplitude + , http://dbpedia.org/resource/Polarization_%28waves%29 + , http://dbpedia.org/resource/Complementarity_principle + , http://dbpedia.org/resource/Quantum_computing + , http://dbpedia.org/resource/Probability + , http://dbpedia.org/resource/Electric_current + , http://dbpedia.org/resource/Magnetism + , http://dbpedia.org/resource/Principal_quantum_number + , http://dbpedia.org/resource/Brady_Haran + , http://dbpedia.org/resource/Quantum_numbers + , http://dbpedia.org/resource/Macroscopic_scale + , http://dbpedia.org/resource/Spin_quantum_number + , http://dbpedia.org/resource/Category:Quantum_mechanics + , http://dbpedia.org/resource/Electroweak_theory + , http://dbpedia.org/resource/De_Broglie_hypothesis + , http://dbpedia.org/resource/Macroscopic_quantum_phenomena + , http://dbpedia.org/resource/USB_flash_drive + , http://dbpedia.org/resource/Philipp_Lenard + , http://dbpedia.org/resource/Otto_Stern + , http://dbpedia.org/resource/Higgs_particle + , http://dbpedia.org/resource/Fine_structure + , http://dbpedia.org/resource/Theodore_Lyman_IV + , http://dbpedia.org/resource/Wave%E2%80%93particle_duality + , http://dbpedia.org/resource/Arnold_Sommerfeld + , http://dbpedia.org/resource/Azimuthal_quantum_number + , http://dbpedia.org/resource/Ultraviolet + , http://dbpedia.org/resource/Magnetic_quantum_number + , http://dbpedia.org/resource/Quark + , http://dbpedia.org/resource/Interference_%28wave_propagation%29 + , http://dbpedia.org/resource/Measurement_in_quantum_mechanics + , http://dbpedia.org/resource/Classical_electromagnetism + , http://dbpedia.org/resource/Uncertainty_principle + , http://dbpedia.org/resource/Planck_constant + , http://dbpedia.org/resource/Atom + , http://dbpedia.org/resource/QED:_The_Strange_Theory_of_Light_and_Matter + , http://dbpedia.org/resource/Photoelectric_effect + , http://dbpedia.org/resource/Photon_energy + , http://dbpedia.org/resource/Electron + , http://dbpedia.org/resource/Kyushu_University + , http://dbpedia.org/resource/Rydberg_constant + , http://dbpedia.org/resource/File:Bohr_atom_model_English.svg + , http://dbpedia.org/resource/File:Superposition.svg + , http://dbpedia.org/resource/Pauli_equation + , http://dbpedia.org/resource/File:Wave-particle_duality.ogv + , http://dbpedia.org/resource/Linus_Pauling + , http://dbpedia.org/resource/Charged_particle + , http://dbpedia.org/resource/File:Paul_Dirac%2C_1933%2C_head_and_shoulders_portrait%2C_bw.jpg + , http://dbpedia.org/resource/Wikt:en:red-hot + , http://dbpedia.org/resource/File:Atomic_orbitals_spdf_m-eigenstates.png + , http://dbpedia.org/resource/Samuel_Goudsmit + , http://dbpedia.org/resource/File:Heisenberg_10.jpg + , http://dbpedia.org/resource/Martinus_Veltman + , http://dbpedia.org/resource/Quantum_number + , http://dbpedia.org/resource/Eigenstate + , http://dbpedia.org/resource/File:Wolfgang_Pauli_young.jpg + , http://dbpedia.org/resource/Schr%C3%B6dinger_equation + , http://dbpedia.org/resource/Niels_Bohr + , http://dbpedia.org/resource/Resonance:_Journal_of_Science_Education + , http://dbpedia.org/resource/File:Quantum_spin_and_the_Stern-Gerlach_experiment.ogv + , http://dbpedia.org/resource/Measurement + , http://dbpedia.org/resource/Bell%27s_theorem + , http://dbpedia.org/resource/Quantum_state + , http://dbpedia.org/resource/Merriam-Webster + , http://dbpedia.org/resource/Bohr_model_of_the_atom + , http://dbpedia.org/resource/Elementary_particle + , http://dbpedia.org/resource/Coulomb%27s_law + , http://dbpedia.org/resource/Black_body + , http://dbpedia.org/resource/Bra%E2%80%93ket_notation + , http://dbpedia.org/resource/Victor_Stenger + , http://dbpedia.org/resource/Atomic_orbital + , http://dbpedia.org/resource/Relativistic_quantum_theory + , http://dbpedia.org/resource/Static_electricity + , http://dbpedia.org/resource/Bohr_model + , http://dbpedia.org/resource/Ehrenfest%27s_theorem + , http://dbpedia.org/resource/Johannes_Rydberg + , http://dbpedia.org/resource/Homogeneity_and_heterogeneity + , http://dbpedia.org/resource/Electric_potential + , http://dbpedia.org/resource/Electric_charge + , http://dbpedia.org/resource/Elementary_charge + , http://dbpedia.org/resource/Quantum_field_theory + , http://dbpedia.org/resource/Electric_field + , http://dbpedia.org/resource/Harmonic_oscillator + , http://dbpedia.org/resource/Tony_Hey + , http://dbpedia.org/resource/Jim_Al-Khalili + , http://dbpedia.org/resource/Quantum_tunneling + , http://dbpedia.org/resource/Charge-coupled_device + , http://dbpedia.org/resource/Walther_Gerlach +
http://dbpedia.org/property/border 1
http://dbpedia.org/property/date June 2018 , November 2019
http://dbpedia.org/property/reason It seems this tries to describe the procesIt seems this tries to describe the process of formulating a QFT, but it is just barely intelligible. If at all bothering to speak about creation and annihilation operators in this "Introduction to QM" article, you need to explain their role as mostly formalism tools and what they operate on. formalism tools and what they operate on. , "There should be slightly more detail about exactly what the equation says. A reader should be able to roughly imagine what the evolution described by the equation looks like"
http://dbpedia.org/property/title A more detailed explanation of the Bohr model , The mathematical formula describing hydrogen's emission spectrum
http://dbpedia.org/property/titlestyle text-align:center
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Circa + , http://dbpedia.org/resource/Template:= + , http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:ISBN%3F + , http://dbpedia.org/resource/Template:Citation_needed + , http://dbpedia.org/resource/Template:Clarify + , http://dbpedia.org/resource/Template:Short_description + , http://dbpedia.org/resource/Template:Math + , http://dbpedia.org/resource/Template:Cite_conference + , http://dbpedia.org/resource/Template:Wikibooks + , http://dbpedia.org/resource/Template:See_also + , http://dbpedia.org/resource/Template:Refn + , http://dbpedia.org/resource/Template:ISBN + , http://dbpedia.org/resource/Template:Update_section + , http://dbpedia.org/resource/Template:Cite_arXiv + , http://dbpedia.org/resource/Template:Quote + , http://dbpedia.org/resource/Template:Further + , http://dbpedia.org/resource/Template:Rp + , http://dbpedia.org/resource/Template:Portal + , http://dbpedia.org/resource/Template:Cite_book + , http://dbpedia.org/resource/Template:Clear + , http://dbpedia.org/resource/Template:Wide_image + , http://dbpedia.org/resource/Template:Chemical_bonding_theory + , http://dbpedia.org/resource/Template:Electron_configuration_navbox + , http://dbpedia.org/resource/Template:Cite_journal + , http://dbpedia.org/resource/Template:Val + , http://dbpedia.org/resource/Template:Cite_web + , http://dbpedia.org/resource/Template:Use_dmy_dates + , http://dbpedia.org/resource/Template:Main + , http://dbpedia.org/resource/Template:Quantum_mechanics + , http://dbpedia.org/resource/Template:Quantum_mechanics_topics + , http://dbpedia.org/resource/Template:Hidden_end + , http://dbpedia.org/resource/Template:Hidden_begin + , http://dbpedia.org/resource/Template:Introductory_article + , http://dbpedia.org/resource/Template:Introductory_science_articles + , http://dbpedia.org/resource/Template:For + , http://dbpedia.org/resource/Template:Frac +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Quantum_mechanics + , http://dbpedia.org/resource/Category:Articles_containing_video_clips +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics?oldid=1120064882&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Heisenberg_10.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Superposition.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Atomic_orbitals_spdf_m-eigenstates.png + , http://commons.wikimedia.org/wiki/Special:FilePath/Paul_Dirac%2C_1933%2C_head_and_shoulders_portrait%2C_bw.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Einstein_patentoffice.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Broglie_Big.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Bohr_atom_model_English.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Niels_Bohr_Institute_1.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Emission_spectrum-H.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Single_slit_and_double_slit2.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Wolfgang_Pauli_young.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Hot_metalwork.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Niels_Bohr_-_LOC_-_ggbain_-_35303.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Photoelectric_effect_in_a_solid_-_diagram.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Max_Planck_1878.gif + , http://commons.wikimedia.org/wiki/Special:FilePath/RWP-comparison.svg +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics +
owl:sameAs http://hr.dbpedia.org/resource/Uvod_u_kvantnu_mehaniku + , http://tr.dbpedia.org/resource/Kuantum_mekani%C4%9Fine_giri%C5%9F + , http://kn.dbpedia.org/resource/%E0%B2%95%E0%B3%8D%E0%B2%B5%E0%B2%BE%E0%B2%82%E0%B2%9F%E0%B2%AE%E0%B3%8D_%E0%B2%AF%E0%B2%82%E0%B2%A4%E0%B3%8D%E0%B2%B0%E0%B2%B6%E0%B2%BE%E0%B2%B8%E0%B3%8D%E0%B2%A4%E0%B3%8D%E0%B2%B0%E0%B2%A6_%E0%B2%AA%E0%B3%8D%E0%B2%B0%E0%B2%B5%E0%B3%87%E0%B2%B6%E0%B2%BF%E0%B2%95%E0%B3%86 + , http://bn.dbpedia.org/resource/%E0%A6%95%E0%A7%8B%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%A8%E0%A7%8D%E0%A6%9F%E0%A6%BE%E0%A6%AE_%E0%A6%AC%E0%A6%B2%E0%A6%AC%E0%A6%BF%E0%A6%A6%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%B0_%E0%A6%AD%E0%A7%82%E0%A6%AE%E0%A6%BF%E0%A6%95%E0%A6%BE + , http://ms.dbpedia.org/resource/Pengenalan_pada_mekanik_kuantum + , http://fr.dbpedia.org/resource/Introduction_%C3%A0_la_m%C3%A9canique_quantique + , http://pnb.dbpedia.org/resource/%DA%A9%D9%88%D8%A7%D9%86%D9%B9%D9%85_%D9%85%DA%A9%DB%8C%D9%86%DA%A9%D8%B3_%D9%86%D8%A7%D9%84_%D8%AC%D8%A7%D9%86-%D9%BE%DA%86%DA%BE%D8%A7%D9%86 + , http://dbpedia.org/resource/Introduction_to_quantum_mechanics + , http://pa.dbpedia.org/resource/%E0%A8%95%E0%A9%81%E0%A8%86%E0%A8%82%E0%A8%9F%E0%A8%AE_%E0%A8%AE%E0%A8%95%E0%A9%88%E0%A8%A8%E0%A8%BF%E0%A8%95%E0%A8%B8_%E0%A8%A8%E0%A8%BE%E0%A8%B2_%E0%A8%9C%E0%A8%BE%E0%A8%A3-%E0%A8%AA%E0%A8%9B%E0%A8%BE%E0%A8%A3 + , http://id.dbpedia.org/resource/Pengantar_mekanika_kuantum + , http://sl.dbpedia.org/resource/Uvod_v_kvantno_mehaniko + , http://ar.dbpedia.org/resource/%D9%85%D9%82%D8%AF%D9%85%D8%A9_%D9%81%D9%8A_%D9%85%D9%8A%D9%83%D8%A7%D9%86%D9%8A%D9%83%D8%A7_%D8%A7%D9%84%D9%83%D9%85 + , https://global.dbpedia.org/id/2zDYg + , http://ro.dbpedia.org/resource/Introducere_%C3%AEn_mecanica_cuantic%C4%83 + , http://rdf.freebase.com/ns/m.065yvpg + , http://pt.dbpedia.org/resource/Introdu%C3%A7%C3%A3o_%C3%A0_mec%C3%A2nica_qu%C3%A2ntica + , http://zh.dbpedia.org/resource/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8%E5%85%A5%E9%96%80 + , http://mr.dbpedia.org/resource/%E0%A4%AA%E0%A5%81%E0%A4%82%E0%A4%9C_%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%95%E0%A4%BE%E0%A4%9A%E0%A5%80_%E0%A4%93%E0%A4%B3%E0%A4%96 + , http://yago-knowledge.org/resource/Introduction_to_quantum_mechanics + , http://hi.dbpedia.org/resource/%E0%A4%95%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%82%E0%A4%9F%E0%A4%AE_%E0%A4%AF%E0%A4%BE%E0%A4%82%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%80_%E0%A4%95%E0%A4%BE_%E0%A4%AA%E0%A4%B0%E0%A4%BF%E0%A4%9A%E0%A4%AF + , http://www.wikidata.org/entity/Q3238797 + , http://sk.dbpedia.org/resource/%C3%9Avod_do_kvantovej_mechaniky + , http://is.dbpedia.org/resource/Inngangur_a%C3%B0_skammtafr%C3%A6%C3%B0i + , http://ko.dbpedia.org/resource/%EC%96%91%EC%9E%90%EC%97%AD%ED%95%99_%EA%B0%9C%EB%A1%A0 +
rdfs:comment La mécanique quantique est la science de lLa mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. En physique, le mot « quantum » désigne la quantité minimale de toute entité physique impliquée dans une interaction. Certaines caractéristiques de la matière ne peuvent prendre que certaines valeurs précises, elles sont dites « discrètes ». précises, elles sont dites « discrètes ». , Mekanika kuantum adalah sains benda sangatMekanika kuantum adalah sains benda sangat kecil. Ilmu ini mempelajari sifat zat dan interaksinya dengan energi pada skala atom dan partikel subatomik. Kebalikannya, fisika klasik hanya menjelaskan zat dan energi pada skala yang familiar dengan manusia, termasuk perilaku benda astronomi seperti Bulan. Fisika klasik masih banya digunakan pada sains dan teknologi modern. Namun, di akhir abad ke-19, para ilmuwan menemukan fenomena pada benda besar berskala makro dan benda kecil (mikro) yang fisika klasik tidak dapat menjelaskannya. Akibat keterbatasan ini muncullah 2 revolusi besar pada bidang fisika yang menyebabkan perubahan paradigma sains pada awalnya: teori relativitas dan pengembangan mekanika kuantum. Artikel ini menjelaskan bagaimana fisikawan menemukan keterbatasan fisika klasik dan menemukan keterbatasan fisika klasik dan , Quantum mechanics is the study of matter aQuantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to two major revolutions in physics that created a shift in the original scientific paradigm: the theory of relativity and the development of quantum mechanics. This articvelopment of quantum mechanics. This artic , Mecânica quântica (ou teoria quântica) é uMecânica quântica (ou teoria quântica) é um ramo da física que lida com o comportamento da matéria e da energia na escala de átomos e partículas subatômicas. A mecânica quântica é fundamental ao nosso entendimento de todas as forças fundamentais da natureza, exceto a gravidade.damentais da natureza, exceto a gravidade. , 量子力学(英語:quantum mechanics;或称量子论)是描述微观物质(原子量子力学(英語:quantum mechanics;或称量子论)是描述微观物质(原子、亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(电磁相互作用、强相互作用、弱相互作用)的基础。 量子力学是许多物理学分支的基础,包括电磁学、粒子物理、凝聚态物理以及宇宙学的部分内容。量子力学也是化学键理论、结构生物学以及电子学等学科的基础。 量子力學主要是用來描述微觀下的行為,所描述的粒子現象無法精確地以古典力學詮釋。例如:根據哥本哈根詮釋,一個粒子在被觀測之前,不具有任何物理性質,然而被觀測之後,依測量儀器而定,可能觀測到其粒子性質,也可能觀測到其波動性質,或者觀測到一部分粒子性質一部分波動性質,此即波粒二象性。 量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。 , هذا المقال هو مقدمة غير تقنية للوصول لهذا هذا المقال هو مقدمة غير تقنية للوصول لهذا الموضوع، ولقراءة المقال الرئيسي راجع ميكانيكا الكم. ميكانيكا الكم هي مجموعة من المبادئ العلمية التي تفسر سلوك المادة وتفاعلاتها مع الطاقة على مقياس الذرات والجسيمات دون الذرية. توضح الفيزياء التقليدية دراسة المادة والطاقة بالعين المجردة المستوى على نطاق مألوف لتجربة إنسانية بما في ذلك سلوك الأجسام الفلكية. لكنها تبقى المفتاح الأساسي لقياس الكثير من العلوم والتكنولوجيا الحديثة؛ ومع ذلك في نهاية القرن 19 اكتشف العلماء ظواهر في العوالم الماكروية (الكبيرة) والمايكروية (متناهية الصغر) لم تتمكن الفيزياء التقليدية من تفسيرهاغر) لم تتمكن الفيزياء التقليدية من تفسيرها , 양자역학은 매우 작은, 특히 양자에 대한 것에 대한 과학으로, 원자와 기본입양자역학은 매우 작은, 특히 양자에 대한 것에 대한 과학으로, 원자와 기본입자의 규모에서 물질의 거동과 에너지와의 상호작용에 대해 설명한다. 대조적으로 고전물리학은 오로지 인간 경험을 통해 익숙한 규모에 대해서만 설명하는데, 예시로는 달과 같은 천체의 움직임 등이 있다. 고전 물리학은 현대 과학과 기술에서 여전히 사용되고 있다. 그러나 19세기 말에 과학자들은 큰 규모(거시규모)와 작은 규모(미시규모)의 세계에서 고전물리학으로 설명할 수 없는 현상을 발견하였다. 관측된 현상과 고전 이론의 불일치를 해결하고 싶은 욕망은 상대성이론과 양자역학의 발전이라는 물리분야의 큰 변혁을 일으켰고, 기존의 과학적 사고관을 변화시켰다. 이 문서는 20세기의 처음 수십년동안 물리학자들이 어떻게 고전물리학의 한계를 발견하고 고전물리학을 대체할 양자역학의 주요 개념을 발전시켰는지에 대해서 설명한다. 이러한 업적에 대한 더 완벽한 역사는 양자역학의 역사문서에 있다.설명한다. 이러한 업적에 대한 더 완벽한 역사는 양자역학의 역사문서에 있다.
rdfs:label Introduction to quantum mechanics , مقدمة في ميكانيكا الكم , 量子力學入門 , Pengantar mekanika kuantum , Introduction à la mécanique quantique , Introdução à mecânica quântica , 양자역학 개론
rdfs:seeAlso http://dbpedia.org/resource/Stern%E2%80%93Gerlach_experiment +
hide properties that link here 
http://dbpedia.org/resource/Schr%C3%B6dinger%27s_Kittens_and_the_Search_for_Reality + , http://dbpedia.org/resource/In_Search_of_Schr%C3%B6dinger%27s_Cat + http://dbpedia.org/ontology/nonFictionSubject
http://dbpedia.org/resource/Basic_quantum_mechanics + , http://dbpedia.org/resource/Basic_concepts_of_quantum_mechanics + , http://dbpedia.org/resource/Basics_of_quantum_mechanics + , http://dbpedia.org/resource/Basics_of_Quantum_Mechanics + , http://dbpedia.org/resource/Non-mathematical_quantum_mechanics + , http://dbpedia.org/resource/Introduction_to_Quantum_Mechanics + , http://dbpedia.org/resource/Introduction_to_Quantum_mechanics + , http://dbpedia.org/resource/Basic_Quantum_Mechanics + , http://dbpedia.org/resource/Quantum_Mechanics_-_simplified + , http://dbpedia.org/resource/Quantum_mechanics_%28basic%29 + , http://dbpedia.org/resource/Quantum_mechanics_-_simplified + , http://dbpedia.org/resource/Quantum_mechanics_made_easy + , http://dbpedia.org/resource/Quantum_mechanics_simplified + , http://dbpedia.org/resource/Easy_quantum_mechanics + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Quantum_field_theory + , http://dbpedia.org/resource/Matrix_mechanics + , http://dbpedia.org/resource/Quantum_pseudo-telepathy + , http://dbpedia.org/resource/Quantum_metamaterial + , http://dbpedia.org/resource/Electron_configuration + , http://dbpedia.org/resource/Physical_chemistry + , http://dbpedia.org/resource/The_Death_Gate_Cycle + , http://dbpedia.org/resource/Stone_%28novel%29 + , http://dbpedia.org/resource/Metaphysics + , http://dbpedia.org/resource/Chemical_polarity + , http://dbpedia.org/resource/Schr%C3%B6dinger%27s_Kittens_and_the_Search_for_Reality + , http://dbpedia.org/resource/Enrico_Pedrini + , http://dbpedia.org/resource/Outline_of_Albert_Einstein + , http://dbpedia.org/resource/Neutron + , http://dbpedia.org/resource/Douglas_Hartree + , http://dbpedia.org/resource/Third_law_of_thermodynamics + , http://dbpedia.org/resource/Ilium/Olympos + , http://dbpedia.org/resource/Introduction_to_M-theory + , http://dbpedia.org/resource/Quantum_teleportation + , http://dbpedia.org/resource/List_of_Boy_Meets_World_characters + , http://dbpedia.org/resource/In_Search_of_Schr%C3%B6dinger%27s_Cat + , http://dbpedia.org/resource/Theoretical_and_experimental_justification_for_the_Schr%C3%B6dinger_equation + , http://dbpedia.org/resource/Glossary_of_elementary_quantum_mechanics + , http://dbpedia.org/resource/Introduction_to_general_relativity + , http://dbpedia.org/resource/Commutative_property + , http://dbpedia.org/resource/Uncertainty_principle + , http://dbpedia.org/resource/Photoelectric_effect + , http://dbpedia.org/resource/Planck_constant + , http://dbpedia.org/resource/Quantum + , http://dbpedia.org/resource/Particle_physics + , http://dbpedia.org/resource/Relational_quantum_mechanics + , http://dbpedia.org/resource/Macroscopic_quantum_self-trapping + , http://dbpedia.org/resource/Buddhism_and_science + , http://dbpedia.org/resource/Schr%C3%B6dinger_equation + , http://dbpedia.org/resource/Index_of_physics_articles_%28I%29 + , http://dbpedia.org/resource/Determinism + , http://dbpedia.org/resource/Basic_quantum_mechanics + , http://dbpedia.org/resource/Arthur_Eddington + , http://dbpedia.org/resource/Atomic_theory + , http://dbpedia.org/resource/Bohr_model + , http://dbpedia.org/resource/Quantum_state + , http://dbpedia.org/resource/Azimuthal_quantum_number + , http://dbpedia.org/resource/Principal_quantum_number + , http://dbpedia.org/resource/April_24 + , http://dbpedia.org/resource/Linus_Pauling + , http://dbpedia.org/resource/John_Horgan_%28journalist%29 + , http://dbpedia.org/resource/Flashforward_%28novel%29 + , http://dbpedia.org/resource/Photon_structure_function + , http://dbpedia.org/resource/Georgios_Balanos + , http://dbpedia.org/resource/Basic_concepts_of_quantum_mechanics + , http://dbpedia.org/resource/William_Mitchell_%28philosopher%29 + , http://dbpedia.org/resource/The_Way_the_World_Is + , http://dbpedia.org/resource/Wave_packet + , http://dbpedia.org/resource/Report_on_Probability_A + , http://dbpedia.org/resource/Basics_of_quantum_mechanics + , http://dbpedia.org/resource/Basics_of_Quantum_Mechanics + , http://dbpedia.org/resource/Non-mathematical_quantum_mechanics + , http://dbpedia.org/resource/Introduction_to_Quantum_Mechanics + , http://dbpedia.org/resource/Introduction_to_Quantum_mechanics + , http://dbpedia.org/resource/Basic_Quantum_Mechanics + , http://dbpedia.org/resource/Quantum_Mechanics_-_simplified + , http://dbpedia.org/resource/Quantum_mechanics_%28basic%29 + , http://dbpedia.org/resource/Quantum_mechanics_-_simplified + , http://dbpedia.org/resource/Quantum_mechanics_made_easy + , http://dbpedia.org/resource/Quantum_mechanics_simplified + , http://dbpedia.org/resource/Easy_quantum_mechanics + , http://dbpedia.org/resource/Understandable_quantum_mechanics + http://dbpedia.org/ontology/wikiPageWikiLink
http://dbpedia.org/resource/Schr%C3%B6dinger%27s_Kittens_and_the_Search_for_Reality + , http://dbpedia.org/resource/In_Search_of_Schr%C3%B6dinger%27s_Cat + http://dbpedia.org/property/subject
http://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Introduction_to_quantum_mechanics + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.