Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Exp algebra
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Exp_algebra
http://dbpedia.org/ontology/abstract In mathematics, an exp algebra is a Hopf aIn mathematics, an exp algebra is a Hopf algebra Exp(G) constructed from an abelian group G, and is the universal ring R such that there is an exponential map from G to the group of the power series in R[[t]] with constant term 1. In other words the functor Exp from abelian groups to commutative rings is adjoint to the functor from commutative rings to abelian groups taking a ring to the group of formal power series with constant term 1. The definition of the exp ring of G is similar to that of the group ring Z[G] of G, which is the universal ring such that there is an exponential homomorphism from the group to its units. In particular there is a natural homomorphism from the group ring to a completion of the exp ring. However in general the Exp ring can be much larger than the group ring: for example, the group ring of the integers is the ring of Laurent polynomials in 1 variable, while the exp ring is a polynomial ring in countably many generators.ynomial ring in countably many generators.
http://dbpedia.org/ontology/wikiPageID 42475707
http://dbpedia.org/ontology/wikiPageLength 3506
http://dbpedia.org/ontology/wikiPageRevisionID 1115805271
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Category:Hopf_algebras + , http://dbpedia.org/resource/Coproduct + , http://dbpedia.org/resource/Commutative_ring + , http://dbpedia.org/resource/Group_ring + , http://dbpedia.org/resource/Ring_of_symmetric_functions + , http://dbpedia.org/resource/Abelian_group + , http://dbpedia.org/resource/Hopf_algebra + , http://dbpedia.org/resource/Formal_power_series + , http://dbpedia.org/resource/%CE%9B-ring + , http://dbpedia.org/resource/Laurent_polynomial + , http://dbpedia.org/resource/Ring_%28mathematics%29 + , http://dbpedia.org/resource/Hopf_algebra_of_symmetric_functions + , http://dbpedia.org/resource/Universal_property +
http://dbpedia.org/property/first V. V. , Michiel , Nadiya
http://dbpedia.org/property/isbn 978
http://dbpedia.org/property/last Gubareni , Hazewinkel , Kirichenko
http://dbpedia.org/property/mr 2724822
http://dbpedia.org/property/place Providence, RI
http://dbpedia.org/property/publisher American Mathematical Society
http://dbpedia.org/property/series Mathematical Surveys and Monographs
http://dbpedia.org/property/title Algebras, rings and modules. Lie algebras and Hopf algebras
http://dbpedia.org/property/volume 168
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Harvs + , http://dbpedia.org/resource/Template:Harvtxt + , http://dbpedia.org/resource/Template:Citation +
http://dbpedia.org/property/year 2010
http://dbpedia.org/property/zbl 1211.16023
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Hopf_algebras +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Exp +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Exp_algebra?oldid=1115805271&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Exp_algebra +
owl:sameAs https://global.dbpedia.org/id/faLz + , http://dbpedia.org/resource/Exp_algebra + , http://www.wikidata.org/entity/Q17012869 + , http://yago-knowledge.org/resource/Exp_algebra + , http://rdf.freebase.com/ns/m.010fbxy1 +
rdf:type http://dbpedia.org/class/yago/Science105999797 + , http://dbpedia.org/class/yago/Cognition100023271 + , http://dbpedia.org/class/yago/Discipline105996646 + , http://dbpedia.org/class/yago/PsychologicalFeature100023100 + , http://dbpedia.org/class/yago/Content105809192 + , http://dbpedia.org/class/yago/PureMathematics106003682 + , http://dbpedia.org/class/yago/Algebra106012726 + , http://dbpedia.org/class/yago/Mathematics106000644 + , http://dbpedia.org/class/yago/KnowledgeDomain105999266 + , http://dbpedia.org/class/yago/WikicatHopfAlgebras + , http://dbpedia.org/class/yago/Abstraction100002137 +
rdfs:comment In mathematics, an exp algebra is a Hopf aIn mathematics, an exp algebra is a Hopf algebra Exp(G) constructed from an abelian group G, and is the universal ring R such that there is an exponential map from G to the group of the power series in R[[t]] with constant term 1. In other words the functor Exp from abelian groups to commutative rings is adjoint to the functor from commutative rings to abelian groups taking a ring to the group of formal power series with constant term 1. formal power series with constant term 1.
rdfs:label Exp algebra
hide properties that link here 
http://dbpedia.org/resource/Exp_ring + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Exp_ring + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Exp_algebra + http://xmlns.com/foaf/0.1/primaryTopic
 

 

Enter the name of the page to start semantic browsing from.