Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Normal form for free groups and free product of groups
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Normal_form_for_free_groups_and_free_product_of_groups
http://dbpedia.org/ontology/abstract In mathematics, particularly in combinatorIn mathematics, particularly in combinatorial group theory, a normal form for a free group over a set of generators or for a free product of groups is a representation of an element by a simpler element, the element being either in the free group or free products of group. In case of free group these simpler elements are reduced words and in the case of free product of groups these are reduced sequences. The precise definitions of these are given below. As it turns out, for a free group and for the free product of groups, there exists a unique normal form i.e each element is representable by a simpler element and this representation is unique. This is the Normal Form Theorem for the free groups and for the free product of groups. The proof here of the Normal Form Theorem follows the idea of Artin and van der Waerden.ows the idea of Artin and van der Waerden.
http://dbpedia.org/ontology/wikiPageExternalLink https://books.google.com/books%3Fid=aiPVBygHi_oC +
http://dbpedia.org/ontology/wikiPageID 35787044
http://dbpedia.org/ontology/wikiPageLength 6604
http://dbpedia.org/ontology/wikiPageRevisionID 1026577928
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Combinatorial_group_theory + , http://dbpedia.org/resource/Reduced_words + , http://dbpedia.org/resource/Generating_set + , http://dbpedia.org/resource/Category:Combinatorial_group_theory + , http://dbpedia.org/resource/Free_product + , http://dbpedia.org/resource/Free_product_of_groups + , http://dbpedia.org/resource/Emil_Artin + , http://dbpedia.org/resource/Reduced_word + , http://dbpedia.org/resource/Free_group + , http://dbpedia.org/resource/Van_der_Waerden + , http://dbpedia.org/resource/Generator_%28groups%29 +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Math + , http://dbpedia.org/resource/Template:Cite_book + , http://dbpedia.org/resource/Template:= + , http://dbpedia.org/resource/Template:Technical +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Combinatorial_group_theory +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Representation +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Normal_form_for_free_groups_and_free_product_of_groups?oldid=1026577928&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Normal_form_for_free_groups_and_free_product_of_groups +
owl:sameAs http://www.wikidata.org/entity/Q7051807 + , http://dbpedia.org/resource/Normal_form_for_free_groups_and_free_product_of_groups + , http://rdf.freebase.com/ns/m.0jt4vys + , https://global.dbpedia.org/id/4sdrR +
rdfs:comment In mathematics, particularly in combinatorIn mathematics, particularly in combinatorial group theory, a normal form for a free group over a set of generators or for a free product of groups is a representation of an element by a simpler element, the element being either in the free group or free products of group. In case of free group these simpler elements are reduced words and in the case of free product of groups these are reduced sequences. The precise definitions of these are given below. As it turns out, for a free group and for the free product of groups, there exists a unique normal form i.e each element is representable by a simpler element and this representation is unique. This is the Normal Form Theorem for the free groups and for the free product of groups. The proof here of the Normal Form Theorem follows the idea othe Normal Form Theorem follows the idea o
rdfs:label Normal form for free groups and free product of groups
hide properties that link here 
http://dbpedia.org/resource/Free_group + , http://dbpedia.org/resource/Word_%28group_theory%29 + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Normal_form_for_free_groups_and_free_product_of_groups + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Normal_form_for_free_groups_and_free_product_of_groups + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.