Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Dephasing
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Dephasing
http://dbpedia.org/ontology/abstract В физике дефазировка — это механизм, восстВ физике дефазировка — это механизм, восстанавливающий классическое поведение квантовой системы. Она относится к способам, которыми когерентность вызванная возмущением со временем затухает, и система возвращается в состояние до возмущения. Это важный эффект в молекулярной и атомной спектроскопии, а также в физике конденсированного состояния мезоскопических устройств.нного состояния мезоскопических устройств. , 位相緩和(いそうかんわ)とは量子力学において、量子状態の重ね合わせが解けコヒーレンス位相緩和(いそうかんわ)とは量子力学において、量子状態の重ね合わせが解けコヒーレンスが失われる現象である。量子コンピュータの分野における関心事の一つに、長い位相緩和時間を実現することがある。単に位相緩和といった場合は、主に緩和時間T2で特徴づけられる横緩和(dephasing)のことを指す。量子デコヒーレンスは、エネルギー緩和を考慮しているため、両者には明確な違いがある。位相緩和は量子デコヒーレンスの素過程である。 物理学では、位相緩和は量子システムから古典的な振る舞いを回復するメカニズムであり、これは摂動によって引き起こされたコヒーレンスが時間の経過とともに減衰し、システムが摂動前の状態に戻る方法を指しており、分子分光法や原子分光法、およびメゾスコピックデバイスの物性物理学において重要な効果である。光法や原子分光法、およびメゾスコピックデバイスの物性物理学において重要な効果である。 , Desfasamento ou "decoerência", basicamenteDesfasamento ou "decoerência", basicamente, é o processo pelo qual a interferência mecânico quântica é destruída, se a ênfase é colocada sobre os princípios físicos e exemplos concretos, em vez do formalismo. Refere-se às maneiras pelas quais a coerência causada pela perturbação decai ao longo do tempo, e o sistema retorna ao estado antes da perturbação. É um efeito importante na espectroscopia molecular e atômica, e na física da matéria condensada dos dispositivos mesoscópicos. condensada dos dispositivos mesoscópicos. , In physics, dephasing is a mechanism that In physics, dephasing is a mechanism that recovers classical behaviour from a quantum system. It refers to the ways in which coherence caused by perturbation decays over time, and the system returns to the state before perturbation. It is an important effect in molecular and atomic spectroscopy, and in the condensed matter physics of mesoscopic devices. The reason can be understood by describing the conduction in metals as a classical phenomenon with quantum effects all embedded into an effective mass that can be computed quantum mechanically, as also happens to resistance that can be seen as a scattering effect of conduction electrons. When the temperature is lowered and the dimensions of the device are meaningfully reduced, this classical behaviour should disappear and the laws of quantum mechanics should govern the behavior of conducting electrons seen as waves that move ballistically inside the conductor without any kind of dissipation. Most of the time this is what one observes. But it appeared as a surprise to uncover that the so-called dephasing time, that is the time it takes for the conducting electrons to lose their quantum behavior, becomes finite rather than infinite when the temperature approaches zero in mesoscopic devices violating the expectations of the theory of Boris Altshuler, Arkady Aronov and David E. Khmelnitskii. This kind of saturation of the dephasing time at low temperatures is an open problem even as several proposals have been put forward. The coherence of a sample is explained by the off-diagonal elements of a density matrix. An external electric or magnetic field can create coherences between two quantum states in a sample if the frequency corresponds to the energy gap between the two states. The coherence terms decay with the dephasing time or spin–spin relaxation, T2. After coherence is created in a sample by light, the sample emits a polarization wave, the frequency of which is equal to and the phase of which is inverted from the incident light. In addition, the sample is excited by the incident light and a population of molecules in the excited state is generated. The light passing through the sample is absorbed because of these two processes, and it is expressed by an absorption spectrum. The coherence decays with the time constant, T2, and the intensity of the polarization wave is reduced. The population of the excited state also decays with the time constant of the longitudinal relaxation, T1. The time constant T2 is usually much smaller than T1, and the bandwidth of the absorption spectrum is related to these time constants by the Fourier transform, so the time constant T2 is a main contributor to the bandwidth. The time constant T2 has been measured with ultrafast time-resolved spectroscopy directly, such as in photon echo experiments. What is the dephasing rate of a particle that has an energy E if it is subject to a fluctuating environment that has a temperature T? In particular what is the dephasing rate close to equilibrium (E~T), and what happens in the zero temperature limit? This question has fascinated the mesoscopic community during the last two decades (see references below).e last two decades (see references below).
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Cavity_Dephasing_Simulation.png?width=300 +
http://dbpedia.org/ontology/wikiPageID 1262398
http://dbpedia.org/ontology/wikiPageLength 6980
http://dbpedia.org/ontology/wikiPageRevisionID 1116054178
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Journal_of_the_Physical_Society_of_Japan + , http://dbpedia.org/resource/Time-resolved_spectroscopy + , http://dbpedia.org/resource/Quantum_physics + , http://dbpedia.org/resource/Spectroscopy + , http://dbpedia.org/resource/Category:Quantum_information_science + , http://dbpedia.org/resource/Electric_field + , http://dbpedia.org/resource/Quantum_state + , http://dbpedia.org/resource/Magnetic_field + , http://dbpedia.org/resource/Kluwer + , http://dbpedia.org/resource/Category:Wave_mechanics + , http://dbpedia.org/resource/Arkady_Aronov + , http://dbpedia.org/resource/Polarization_%28waves%29 + , http://dbpedia.org/resource/Category:Quantum_optics + , http://dbpedia.org/resource/Spin%E2%80%93lattice_relaxation + , http://dbpedia.org/resource/Mesoscopic + , http://dbpedia.org/resource/Scattering_theory + , http://dbpedia.org/resource/Effective_mass_%28solid-state_physics%29 + , http://dbpedia.org/resource/Conductance_quantum + , http://dbpedia.org/resource/Density_state + , http://dbpedia.org/resource/File:Cavity_Dephasing_Simulation.png + , http://dbpedia.org/resource/Boris_Altshuler + , http://dbpedia.org/resource/Physica_E + , http://dbpedia.org/resource/Spin%E2%80%93spin_relaxation + , http://dbpedia.org/resource/Frequency + , http://dbpedia.org/resource/Condensed_matter_physics + , http://dbpedia.org/resource/Classical_physics + , http://dbpedia.org/resource/Valence_and_conduction_bands + , http://dbpedia.org/resource/Category:Mesoscopic_physics + , http://dbpedia.org/resource/Physics + , http://dbpedia.org/resource/Oxford_University_Press + , http://dbpedia.org/resource/Physical_Review_B + , http://dbpedia.org/resource/Dephasing_rate_SP_formula + , http://dbpedia.org/resource/Phase_%28waves%29 + , http://dbpedia.org/resource/Physical_Review_Letters + , http://dbpedia.org/resource/Spin_echo + , http://dbpedia.org/resource/Coherence_%28physics%29 + , http://dbpedia.org/resource/Ballistic_conduction + , http://dbpedia.org/resource/Fourier_transform + , http://dbpedia.org/resource/Absorption_spectrum +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Cite_book + , http://dbpedia.org/resource/Template:Multiple_issues + , http://dbpedia.org/resource/Template:To_whom%3F + , http://dbpedia.org/resource/Template:EngvarB + , http://dbpedia.org/resource/Template:Unfocused + , http://dbpedia.org/resource/Template:Cite_journal + , http://dbpedia.org/resource/Template:In_line_citation + , http://dbpedia.org/resource/Template:Short_description +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Wave_mechanics + , http://dbpedia.org/resource/Category:Mesoscopic_physics + , http://dbpedia.org/resource/Category:Quantum_optics + , http://dbpedia.org/resource/Category:Quantum_information_science +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Mechanism +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Dephasing?oldid=1116054178&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Cavity_Dephasing_Simulation.png +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Dephasing +
owl:sameAs http://yago-knowledge.org/resource/Dephasing + , https://global.dbpedia.org/id/4ibmi + , http://ja.dbpedia.org/resource/%E4%BD%8D%E7%9B%B8%E7%B7%A9%E5%92%8C + , http://ru.dbpedia.org/resource/%D0%94%D0%B5%D1%84%D0%B0%D0%B7%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0 + , http://www.wikidata.org/entity/Q5260650 + , http://rdf.freebase.com/ns/m.04n5s2 + , http://pt.dbpedia.org/resource/Desfasamento + , http://dbpedia.org/resource/Dephasing +
rdf:type http://dbpedia.org/class/yago/BodyPart105220461 + , http://dbpedia.org/class/yago/Part109385911 + , http://dbpedia.org/class/yago/PhysicalEntity100001930 + , http://dbpedia.org/class/yago/Eye105311054 + , http://dbpedia.org/class/yago/Organ105297523 + , http://dbpedia.org/class/yago/SenseOrgan105299178 + , http://dbpedia.org/ontology/Organisation + , http://dbpedia.org/class/yago/WikicatOptics + , http://dbpedia.org/class/yago/Thing100002452 +
rdfs:comment 位相緩和(いそうかんわ)とは量子力学において、量子状態の重ね合わせが解けコヒーレンス位相緩和(いそうかんわ)とは量子力学において、量子状態の重ね合わせが解けコヒーレンスが失われる現象である。量子コンピュータの分野における関心事の一つに、長い位相緩和時間を実現することがある。単に位相緩和といった場合は、主に緩和時間T2で特徴づけられる横緩和(dephasing)のことを指す。量子デコヒーレンスは、エネルギー緩和を考慮しているため、両者には明確な違いがある。位相緩和は量子デコヒーレンスの素過程である。 物理学では、位相緩和は量子システムから古典的な振る舞いを回復するメカニズムであり、これは摂動によって引き起こされたコヒーレンスが時間の経過とともに減衰し、システムが摂動前の状態に戻る方法を指しており、分子分光法や原子分光法、およびメゾスコピックデバイスの物性物理学において重要な効果である。光法や原子分光法、およびメゾスコピックデバイスの物性物理学において重要な効果である。 , In physics, dephasing is a mechanism that In physics, dephasing is a mechanism that recovers classical behaviour from a quantum system. It refers to the ways in which coherence caused by perturbation decays over time, and the system returns to the state before perturbation. It is an important effect in molecular and atomic spectroscopy, and in the condensed matter physics of mesoscopic devices.nsed matter physics of mesoscopic devices. , Desfasamento ou "decoerência", basicamenteDesfasamento ou "decoerência", basicamente, é o processo pelo qual a interferência mecânico quântica é destruída, se a ênfase é colocada sobre os princípios físicos e exemplos concretos, em vez do formalismo. Refere-se às maneiras pelas quais a coerência causada pela perturbação decai ao longo do tempo, e o sistema retorna ao estado antes da perturbação. É um efeito importante na espectroscopia molecular e atômica, e na física da matéria condensada dos dispositivos mesoscópicos. condensada dos dispositivos mesoscópicos. , В физике дефазировка — это механизм, восстВ физике дефазировка — это механизм, восстанавливающий классическое поведение квантовой системы. Она относится к способам, которыми когерентность вызванная возмущением со временем затухает, и система возвращается в состояние до возмущения. Это важный эффект в молекулярной и атомной спектроскопии, а также в физике конденсированного состояния мезоскопических устройств.нного состояния мезоскопических устройств.
rdfs:label Дефазировка , 位相緩和 , Desfasamento , Dephasing
hide properties that link here 
http://dbpedia.org/resource/Statistical_mechanics + , http://dbpedia.org/resource/T2%2A-weighted_imaging + , http://dbpedia.org/resource/Dephasing_rate_SP_formula + , http://dbpedia.org/resource/Elliott_formula + , http://dbpedia.org/resource/Spintronics + , http://dbpedia.org/resource/Quantum_decoherence + , http://dbpedia.org/resource/Cat_state + , http://dbpedia.org/resource/Spin%E2%80%93spin_relaxation + , http://dbpedia.org/resource/Quantum_dissipation + , http://dbpedia.org/resource/Index_of_physics_articles_%28D%29 + , http://dbpedia.org/resource/Relaxation_%28NMR%29 + , http://dbpedia.org/resource/Gradient_enhanced_NMR_spectroscopy + , http://dbpedia.org/resource/Quantum_depolarizing_channel + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Dephasing + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Dephasing + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.