Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Damping
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Damping
http://dbpedia.org/ontology/abstract Laghdú in aimplitiúid ascaluithe trí fhuinneamh a bhaint astu. Mar shampla, tumtar an tsnáthaid táscaire i dtomhsaire in ola go minic chun maolú frithchuimilteach a sholáthar. Maolaíonn comhbhaill fhriotacha i gciorcaid ascaluithe leictreacha. , Dämpning, inbromsning av en rörelse, i synnerhet en vibration. Om en oscillator inte är tillräckligt dämpad, kan resonanser uppstå med störande eller katastrofalt stora amplituder. , Згасні́ колива́ння — коливання, енергія якЗгасні́ колива́ння — коливання, енергія яких зменшується з плином часу. Процес, що триває нескінченно, вигляду в природі неможливий. Вільні коливання будь-якого осцилятора рано чи пізно загасають і припиняються. Тому на практиці звичайно мають справу зі згасними коливаннями. Вони характеризуються тим, що амплітуда коливань A є спадною функцією. Зазвичай загасання відбувається під дією сил опору середовища, найчастіше залежних лінійно від швидкості коливань або її квадрату. В акустиці: загасання — зменшення рівня сигналу до повної нечутності. Коливання можна описати такими типами: * Надзгасні (англ. overdamped): Система повертається до рівноваги без коливань. * Критично згасні (англ. critically damped): Система повертається до рівноваги так швидко як це можливо без коливань. * Слабко згасні (англ. underdamped): Система коливається (з меншою частотою порівняно до незгасного випадку) з амплітудою, що поступово зменшується до нуля. * Незгасні (англ. undamped): Система коливається в її природній резонансній частоті.ається в її природній резонансній частоті. , Damping is an influence within or upon an Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag (a liquid's viscosity can hinder an oscillatory system, causing it to slow down; see viscous damping) in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping. The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate. The damping ratio is a measure describing how rapidly the oscillations decay from one bounce to the next. The damping ratio is a system parameter, denoted by ζ (zeta), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering, chemical engineering, mechanical engineering, structural engineering, and electrical engineering. The physical quantity that is oscillating varies greatly, and could be the swaying of a tall building in the wind, or the speed of an electric motor, but a normalised, or non-dimensionalised approach can be convenient in describing common aspects of behavior. in describing common aspects of behavior. , L'esmorteïment es defineix com la capacitaL'esmorteïment es defineix com la capacitat d'un sistema o cos per a dissipar energia cinètica en un altre tipus d'energia. Típicament els esmortidors dissipen l'energia cinètica en energia tèrmica i/o en energia plàstica (per exemple atenuador d'impactes). L'esmorteïment és un paràmetre fonamental en el camp de les vibracions, fonamental en el desenvolupament de models matemàtics que permeten l'estudi i anàlisi dels sistemes vibratoris com ho són: les estructures metàl·liques, motors, maquinària rotativa, turbines, automòbils, etc. Existeixen diferents mecanismes o tipus d'esmorteïment, segons sigui la seva naturalesa: * Esmorteïment fluid. per la resistència d'un fluid al moviment d'un sòlid. * Esmorteïment per histèresi. ocasionat per fricció interna molecular o histèresi, quan es deforma un cos sòlid. * Esmorteïment per fricció seca. causat per la fricció cinètica entre superfícies lliscants seques.nètica entre superfícies lliscants seques. , 減衰振動(げんすいしんどう、damped oscillation、damped vibration)とは、振幅が時間とともに徐々に小さくなるような振動現象である。単振動などは永久に動き続ける運動であるが、実際にそのような実験を行うと、空気抵抗や摩擦力などの抵抗力を受け、いずれは停止してしまう。そのような運動を減衰振動と呼ぶ。 , In het algemene spraakgebruik is demping dIn het algemene spraakgebruik is demping de reductie van de sterkte van een of ander verschijnsel. Dat kan bijvoorbeeld geluiddemping zijn, of het toepassen van een sordino bij een strijkinstrument of een demper bij bepaalde blaasinstrumenten. Meer specifiek wordt van demping gesproken wanneer de sterkte van een trilling wordt afgeremd. Demping wordt bewust toegepast om de negatieve effecten van resonantie tegen te gaan. In de mechanica door schokdempers en in de elektronica door weerstanden.ers en in de elektronica door weerstanden. , المضاءلة أو التخميد هو أي تأثير، ناتج عن تالمضاءلة أو التخميد هو أي تأثير، ناتج عن تغيير خارجي أو موجود متأصل في نظام معين، يعمل على تقليل سعة الذبذبات، وفي الإلكترونيات يقال تخميد مطال التردد حيث يُقاس مطال التردد بالفولت أو بالأمبير. في الرياضيات التطبيقية، التخميد نموذج رياضي كقوة بسعة تتناسب مع سرعة الجسم ولكن في عكس اتجاهها. وفي آلات العزف الوترية مثل الجيتار والقيثارة والجيتار المعدني، التخميد يعنى إسكات صوت الوتر بعد صدور الصوت منه، بالضغط عليه بقاعدة الريشة أو بأي من أصابع اليد الموجودة على واحد أو أكثر من الأوتار الأخرى. ويكون النظام المثالي لنظام كتلة-زُنبورك-مخمـّد له كتلة ، ثابت الياي ، وثابت المخمـّد ، و هنا تأتي المساواة من أجل ما سبق التي تؤدّي إلى ، وهذا سيلعب دور في الحسابات التالية تحت. يمكن وصف حركة النظام بالمعادلة الآتية : حيث هي إزاحة مركز الكتلة في أي زمن . ويمكن دمج هذه المعادلة إلى: وهذه معادلة تفاضلية من الدرجة الثانية في . ويمكن حلها بفرض ، وعندئذ نحصل على المعادلة المميــّـزة: والتي يمكن حلها إلى: و على هذا الأساس يـُـكتسـَـب الحل العام للمعادلة التفاضلية نحو عندما و يـُـحسبان من شروط القيم البدائية. تصرّف النظام الميكانيكي بالإحالة إلى الاِهتزاز هو تابع لوضع التعبير تحت رمز الجذر، أي إن كان موجب أو سالب أو يساوي صفر. فعندما يكون تكون حقيقية وتوفــّـر حل واحد للمعادلة التفاضلية فقط، ويتصف النظام بتخميد حرج الذي ينبغي أن يـُـسمـّـى . من أجل ذلك تأتي المساواة و تلك تؤدّي إلى . و يؤدّي إلى انعزال ما هو في داخل السابق : وفيها تعتبر كمية لا بعدية وهي نسبة التخميد. و إدخال السابق في حلول المعادلة المميــّـزة يؤدّي إلى : وهنا يجب التفريق إلى قضايا عدّة : * قضية : يعطي إدخال ذلك في الحل العام من المعادلة التفاضلية يعطي مع الصيغات و يــُـكتـســَـب و شروط القيم البدائية وأيضاً تؤدّي إلى : * قضية : هذا الوضع يعطي جذر واحد فقط، وهو ، ولذلك دالـّـة المحاولة (trial function) لا تكفي لتحل ّ المعادلة التفاضلية ؛ وإضافة دالـّـة محاولية ثانية من نوع تساعد في وضع مثل هذا ؛ ومع تنجز المعادلة التفاضلية التي تتــّـخذ الشكل إذاً الدالـّـة المحاولية الكاملة تأتي بالشكل و إدخال شروط القيم البدائية وأيضاً تؤدّي إلى : وأيضاً يوصل التخميد إلى شدّة هنا حتي يبدأ بقهر التذبذب بشكل كامل. * قضية : و يمثــّـلان قيم سالبة وحقيقية مع وأيضاً ؛ وهذا يعبـّـر عن تخميد شديد، وهو أقوى من تخميد القضية السابقة ؛ ولا يسمح بظهور التذبذب.د القضية السابقة ؛ ولا يسمح بظهور التذبذب. , En fiziko, amortizo estas efiko sur oscila sistemo, kiu reduktas la amplitudon de oscilo. , Затухающие колебания — колебания, энергия Затухающие колебания — колебания, энергия которых уменьшается с течением времени.Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата. В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.ние уровня сигнала до полной неслышимости. , O amortecimento, ou atrito interno, é um fO amortecimento, ou atrito interno, é um fenômeno físico observado em sistemas mecânicos que experimentam a dissipação de energia mecânica sob a forma de calor, ruído, atrito viscoso, por histerese ou atrito seco. A existência de pelo menos uma força não conservativa no sistema mecânico, realizando trabalho, implica uma perda de energia mecânica, portanto a ocorrência de amortecimento. É uma das propriedades mais sensíveis de materiais e estruturas, tanto em escala macro quanto microscópica, sendo extremamente sensível à presença de trincas e micro-trincas. O amortecimento determina a amplitude de vibração na ressonância em função do tempo e, o tempo de persistência da vibração após cessada a excitação. A aplicação clássica do amortecimento está na construção civil, na análise de componentes e sistemas pertencentes à construção mecânica, como em automóveis e máquinas. É o amortecimento que garante a integridade de estruturas no caso de abalos sísmicos (sismo). Sua caracterização vem sendo utilizada também no estudo de concretos para avaliação do dano causado por choque térmico, por exemplo. A caracterização do amortecimento permite o monitoramento das trincas e micro-trincas que ocorrem no material e determinam sua vida útil. Na engenharia mecânica, os efeitos indesejados das vibrações mecânicas por vezes é corrigido por um sistema de amortecimento permitindo a execução de um movimento das máquinas que não comprometa a curto prazo todos os componentes do projeto estrutural, garantindo a vida útil de peças, sobretudo daquelas que representam um custo mais elevado.las que representam um custo mais elevado. , En physique, l'amortissement d'un système En physique, l'amortissement d'un système est une atténuation de ses mouvements par dissipation de l'énergie qui les engendre. Il peut être lié de diverses manières à la vitesse. * Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur. Il est régi par la loi de Coulomb selon laquelle la force de frottement ne dépend pas de la vitesse. * Lorsque l'interface est lubrifiée l'énergie mécanique est encore transformée en chaleur mais la force de frottement devient proportionnelle à la vitesse selon la loi de la viscosité. On parle alors d'amortissement visqueux bien que cet effet linéaire apparaisse également dans des phénomènes plus ou moins éloignés. C'est l'aspect de la question essentiellement étudié dans cet article. * Un solide qui oscille dans un fluide est soumis à un tel amortissement lorsque sa vitesse est suffisamment faible pour que l'écoulement soit laminaire. À plus grande vitesse il apparaît un sillage tourbillonnaire ou turbulent qui dissipe l'énergie de manière purement mécanique. Cela conduit à une force de traînée approximativement proportionnelle au carré de la vitesse.nt proportionnelle au carré de la vitesse. , Tlumené kmitání je mechanické kmitání, kteTlumené kmitání je mechanické kmitání, které po určité době ustává. V reálném světě vždy existuje tření a různé jiné odporové síly, které způsobují, že oscilující systém postupně ztrácí energii a jeho amplituda se s časem zmenšuje. Jakkoliv bychom se snažili zamezovat těmto nepříznivým vlivům, omezuje nás druhý zákon termodynamiky, podle kterého se mechanická energie postupně přeměňuje na vnitřní tepelnou energii. Závislost odporových sil od výchylky a její časové derivace může být obecně velmi složitá. V nejjednodušším modelu je odporová síla přímo úměrná první časové derivaci výchylky a působí proti narůstání výchylky. Takovému případu tlumení říkáme lineární tlumení a popisujeme ho vztahem . V případě tělesa na obrázku vpravo odporová síla vzduchu působí vždy proti směru pohybu tohoto tělesa. Ve zmíněném ideálním případě lze zapsat pro časový vývoj výchylky následující diferenciální rovnici popisující silovou rovnováhu: kde , a je v případě mechanického oscilátoru hmotnost, tuhost pružiny a koeficient lineárního tlumení.. Pokud obě strany rovnice vydělíme , dostaneme Zavedeme substituce, které nám později ulehčí práci při popisu řešení: První parametr se nazývá vlastní úhlová rychlost a určuje frekvenci v případě, kdyby na soustavu nepůsobily žádné tlumící vlivy. Druhý parametr nazýváme relativní tlumení a podle jeho hodnoty pak určujeme typy tlumení. Diferenciální rovnice nyní nabyla tvar: Tato homogenní diferenciální rovnice druhého stupně je řešitelná, předpokládáme, že hledané řešení má tvar kde λ jsou kořeny charakteristické rovnice.de λ jsou kořeny charakteristické rovnice. , Tłumienie (gaśnięcie) drgań – zmniejszanieTłumienie (gaśnięcie) drgań – zmniejszanie się amplitudy drgań swobodnych wraz z upływem czasu, związane ze stratami energii układu drgającego. Tłumienie obserwowane jest zarówno w układach mechanicznych jak elektrycznych. W przypadku fal biegnących tłumienie prowadzi do zmniejszania się amplitudy fali wraz ze wzrostem odległości od źródła, co wynika z rozpraszania energii. Za pomocą pojęcia tłumieniu drgań można też opisać przejście atomu lub cząsteczki ze stanu wzbudzonego do niższego stanu energetycznego, połączone z wypromieniowaniem kwantu energii promieniowania elektromagnetycznego.ergii promieniowania elektromagnetycznego. , 阻尼(英語:damping)是指任何振动系统在振动中,由于外界作用(如流體阻力、摩擦阻尼(英語:damping)是指任何振动系统在振动中,由于外界作用(如流體阻力、摩擦力等)和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 在實際振動中,由於摩擦力總是存在的,所以振動系統最初所獲得的能量,在振動過程中因阻力不斷對系統做負功,使得系統的能量不斷減少,振動的強度逐漸減弱,振幅也就越來越小,以至於最後的停止振動,像這樣的因系統的力學能,由於摩擦及轉化成內能逐漸減少,振幅隨時間而減弱振動,稱為阻尼振動。 * 當阻尼較強時,阻尼振子幾乎沒有振動,振幅逐漸減小,達到穩定平衡,稱為過阻尼。 * 當阻尼較弱時,阻尼振子必須緩慢的經由多次振動逐漸把振幅減小,最後回到平衡位置,因此達成穩定平衡的時間較久,稱為欠阻尼。 * 另一種情形是阻尼振子以最平穩的速度,最短的時間達到穩定平衡,稱為臨界阻尼。。 * 另一種情形是阻尼振子以最平穩的速度,最短的時間達到穩定平衡,稱為臨界阻尼。 , La amortiguación o amortiguamiento se defiLa amortiguación o amortiguamiento se define como la capacidad de un sistema o cuerpo para disipar energía cinética en otro tipo de energía. Típicamente los amortiguadores disipan la energía cinética en energía térmica y/o en energía plástica (e.g. atenuador de impactos), es decir, la función de un amortiguador es recibir, absorber y mitigar una fuerza tal, ya sea porque se ha dispersado o porque la energía se ha transformado de forma que la fuerza inicial se haya hecho menor. Cuanto mejor sea la amortiguación de la fuerza inicial, menor será la fuerza recibida sobre el punto final. El amortiguamiento es un parámetro fundamental en el campo de las vibraciones, también en el desarrollo de modelos matemáticos que permiten el estudio y análisis de sistemas vibratorios, como lo son: estructuras metálicas, motores, maquinaria rotativa, turbinas, automóviles, etc. Esto va encaminado a la teoría de que todo sistema vibratorio (regularmente sistemas mecánicos) tiene la capacidad de disipar energía. Para el control de vibraciones e impactos en maquinaria se utiliza el concepto de amortiguamiento como una técnica para disipar energía del sistema, manipulando así la amplitud de vibración en el sistema y otros parámetros de estudio. Existen muchos inventos que aplican los principios de las fuerzas mecánicas los cuales tienen el objetivo de anular o disipar un impacto. También, amortiguación es la disipación de energía en una estructura mecánica y su conversión en calor. Hay varios mecanismos de amortiguación, los más importantes son la amortiguación Coulomb y la amortiguación viscosa.uación Coulomb y la amortiguación viscosa.
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Damped_spring.gif?width=300 +
http://dbpedia.org/ontology/wikiPageID 1744868
http://dbpedia.org/ontology/wikiPageLength 17475
http://dbpedia.org/ontology/wikiPageRevisionID 1117513119
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Electric_motor + , http://dbpedia.org/resource/Logarithmic_decrement + , http://dbpedia.org/resource/Overshoot_%28signal%29 + , http://dbpedia.org/resource/Mechanical_engineering + , http://dbpedia.org/resource/Harmonic_oscillator + , http://dbpedia.org/resource/Attenuation + , http://dbpedia.org/resource/Physical_system + , http://dbpedia.org/resource/Optical_oscillator + , http://dbpedia.org/resource/Drag_%28physics%29 + , http://dbpedia.org/resource/Q_factor + , http://dbpedia.org/resource/E_%28mathematical_constant%29 + , http://dbpedia.org/resource/Ecology + , http://dbpedia.org/resource/Category:Mathematical_analysis + , http://dbpedia.org/resource/Suspension_%28mechanics%29 + , http://dbpedia.org/resource/Chemical_engineering + , http://dbpedia.org/resource/Natural_frequency + , http://dbpedia.org/resource/Step_response + , http://dbpedia.org/resource/Angular_frequency + , http://dbpedia.org/resource/Complex_number + , http://dbpedia.org/resource/Dissipate + , http://dbpedia.org/resource/Alternating_current + , http://dbpedia.org/resource/Sine_wave + , http://dbpedia.org/resource/Electrical_engineering + , http://dbpedia.org/resource/File:Dampingratio111.svg + , http://dbpedia.org/resource/File:2nd_Order_Damping_Ratios.svg + , http://dbpedia.org/resource/File:DampedCosine.svg + , http://dbpedia.org/resource/Viscous_damping + , http://dbpedia.org/resource/Structural_engineering + , http://dbpedia.org/resource/Complex_conjugate + , http://dbpedia.org/resource/Frequency_response + , http://dbpedia.org/resource/Category:Ordinary_differential_equations + , http://dbpedia.org/resource/Category:Dimensionless_numbers_of_mechanics + , http://dbpedia.org/resource/Viscous + , http://dbpedia.org/resource/Friction + , http://dbpedia.org/resource/Category:Classical_mechanics + , http://dbpedia.org/resource/Second-order_differential_equation + , http://dbpedia.org/resource/Viscosity + , http://dbpedia.org/resource/Electrical_resistance_and_conductance + , http://dbpedia.org/resource/Category:Engineering_ratios + , http://dbpedia.org/resource/Bicycle_and_motorcycle_dynamics + , http://dbpedia.org/resource/Static_equilibrium + , http://dbpedia.org/resource/File:Damped_spring.gif + , http://dbpedia.org/resource/Control_theory + , http://dbpedia.org/resource/Energy + , http://dbpedia.org/resource/Time_constant + , http://dbpedia.org/resource/Oscillator + , http://dbpedia.org/resource/Tuning_fork + , http://dbpedia.org/resource/Exponential_decay + , http://dbpedia.org/resource/Hertz + , http://dbpedia.org/resource/Control_engineering + , http://dbpedia.org/resource/Electronic_oscillators + , http://dbpedia.org/resource/Engineering + , http://dbpedia.org/resource/Spring_Constant + , http://dbpedia.org/resource/Half-life + , http://dbpedia.org/resource/Real_part + , http://dbpedia.org/resource/Science + , http://dbpedia.org/resource/Dimensionless + , http://dbpedia.org/resource/Frequency +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:About + , http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:Math + , http://dbpedia.org/resource/Template:Mvar + , http://dbpedia.org/resource/Template:Distinguish + , http://dbpedia.org/resource/Template:Dynamics + , http://dbpedia.org/resource/Template:Short_description +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Ordinary_differential_equations + , http://dbpedia.org/resource/Category:Classical_mechanics + , http://dbpedia.org/resource/Category:Dimensionless_numbers_of_mechanics + , http://dbpedia.org/resource/Category:Mathematical_analysis + , http://dbpedia.org/resource/Category:Engineering_ratios +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Damping?oldid=1117513119&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/2nd_Order_Damping_Ratios.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Damped_spring.gif + , http://commons.wikimedia.org/wiki/Special:FilePath/DampedCosine.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Dampingratio111.svg +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Damping +
owl:differentFrom http://dbpedia.org/resource/Damped_wave_%28radio_transmission%29 +
owl:sameAs http://ru.dbpedia.org/resource/%D0%97%D0%B0%D1%82%D1%83%D1%85%D0%B0%D1%8E%D1%89%D0%B8%D0%B5_%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F + , http://sv.dbpedia.org/resource/D%C3%A4mpning + , http://ar.dbpedia.org/resource/%D8%AA%D8%AE%D9%85%D9%8A%D8%AF + , http://hi.dbpedia.org/resource/%E0%A4%85%E0%A4%B5%E0%A4%AE%E0%A4%A8%E0%A5%8D%E0%A4%A6%E0%A4%A8 + , http://da.dbpedia.org/resource/D%C3%A6mpning + , http://www.wikidata.org/entity/Q1127660 + , http://he.dbpedia.org/resource/%D7%A8%D7%99%D7%A1%D7%95%D7%9F_%28%D7%A4%D7%99%D7%96%D7%99%D7%A7%D7%94%29 + , http://es.dbpedia.org/resource/Amortiguamiento + , http://cs.dbpedia.org/resource/Tlumen%C3%A9_kmit%C3%A1n%C3%AD + , http://uk.dbpedia.org/resource/%D0%97%D0%B3%D0%B0%D1%81%D0%BD%D1%96_%D0%BA%D0%BE%D0%BB%D0%B8%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F + , http://pl.dbpedia.org/resource/T%C5%82umienie + , http://fa.dbpedia.org/resource/%D9%85%DB%8C%D8%B1%D8%A7%DB%8C%DB%8C + , http://cy.dbpedia.org/resource/Gwanychiad + , http://nl.dbpedia.org/resource/Demping + , http://zh.dbpedia.org/resource/%E9%98%BB%E5%B0%BC + , http://dbpedia.org/resource/Damping + , http://hr.dbpedia.org/resource/Prigu%C5%A1enje + , http://hy.dbpedia.org/resource/%D5%84%D5%A1%D6%80%D5%B8%D5%B2_%D5%BF%D5%A1%D5%BF%D5%A1%D5%B6%D5%B8%D6%82%D5%B4%D5%B6%D5%A5%D6%80 + , http://fr.dbpedia.org/resource/Amortissement_physique + , http://ca.dbpedia.org/resource/Esmorte%C3%AFment + , http://yago-knowledge.org/resource/Damping + , https://global.dbpedia.org/id/BBzr + , http://simple.dbpedia.org/resource/Damping + , http://rdf.freebase.com/ns/m.02hbnr + , http://pt.dbpedia.org/resource/Amortecimento + , http://az.dbpedia.org/resource/Dempferl%C9%99m%C9%99_%28s%C3%B6nd%C3%BCrm%C9%99%29 + , http://ga.dbpedia.org/resource/Maol%C3%BA_%28fisic%29 + , http://cv.dbpedia.org/resource/%D0%A1%C3%BF%D0%BD%D0%B5%D0%BA%D0%B5%D0%BD_%D1%81%D1%83%D0%BB%D0%BB%D0%B0%D0%BD%D1%83%D1%81%D0%B5%D0%BC + , http://eo.dbpedia.org/resource/Amortizo + , http://ja.dbpedia.org/resource/%E6%B8%9B%E8%A1%B0%E6%8C%AF%E5%8B%95 +
rdf:type http://dbpedia.org/class/yago/YagoPermanentlyLocatedEntity + , http://dbpedia.org/class/yago/Message106598915 + , http://dbpedia.org/class/yago/Statement106722453 + , http://dbpedia.org/class/yago/Change100191142 + , http://dbpedia.org/class/yago/Action100037396 + , http://dbpedia.org/class/yago/Abstraction100002137 + , http://dbpedia.org/class/yago/Event100029378 + , http://dbpedia.org/class/yago/Motion100331950 + , http://dbpedia.org/class/yago/MathematicalStatement106732169 + , http://dbpedia.org/class/yago/Act100030358 + , http://dbpedia.org/class/yago/WikicatMechanicalVibrations + , http://dbpedia.org/class/yago/WikicatOrdinaryDifferentialEquations + , http://dbpedia.org/class/yago/Equation106669864 + , http://dbpedia.org/class/yago/Vibration100345926 + , http://dbpedia.org/class/yago/Communication100033020 + , http://dbpedia.org/class/yago/DifferentialEquation106670521 + , http://dbpedia.org/class/yago/PsychologicalFeature100023100 +
rdfs:comment Laghdú in aimplitiúid ascaluithe trí fhuinneamh a bhaint astu. Mar shampla, tumtar an tsnáthaid táscaire i dtomhsaire in ola go minic chun maolú frithchuimilteach a sholáthar. Maolaíonn comhbhaill fhriotacha i gciorcaid ascaluithe leictreacha. , Згасні́ колива́ння — коливання, енергія якЗгасні́ колива́ння — коливання, енергія яких зменшується з плином часу. Процес, що триває нескінченно, вигляду в природі неможливий. Вільні коливання будь-якого осцилятора рано чи пізно загасають і припиняються. Тому на практиці звичайно мають справу зі згасними коливаннями. Вони характеризуються тим, що амплітуда коливань A є спадною функцією. Зазвичай загасання відбувається під дією сил опору середовища, найчастіше залежних лінійно від швидкості коливань або її квадрату. В акустиці: загасання — зменшення рівня сигналу до повної нечутності. Коливання можна описати такими типами:ті. Коливання можна описати такими типами: , 減衰振動(げんすいしんどう、damped oscillation、damped vibration)とは、振幅が時間とともに徐々に小さくなるような振動現象である。単振動などは永久に動き続ける運動であるが、実際にそのような実験を行うと、空気抵抗や摩擦力などの抵抗力を受け、いずれは停止してしまう。そのような運動を減衰振動と呼ぶ。 , L'esmorteïment es defineix com la capacitaL'esmorteïment es defineix com la capacitat d'un sistema o cos per a dissipar energia cinètica en un altre tipus d'energia. Típicament els esmortidors dissipen l'energia cinètica en energia tèrmica i/o en energia plàstica (per exemple atenuador d'impactes). L'esmorteïment és un paràmetre fonamental en el camp de les vibracions, fonamental en el desenvolupament de models matemàtics que permeten l'estudi i anàlisi dels sistemes vibratoris com ho són: les estructures metàl·liques, motors, maquinària rotativa, turbines, automòbils, etc.nària rotativa, turbines, automòbils, etc. , 阻尼(英語:damping)是指任何振动系统在振动中,由于外界作用(如流體阻力、摩擦阻尼(英語:damping)是指任何振动系统在振动中,由于外界作用(如流體阻力、摩擦力等)和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 在實際振動中,由於摩擦力總是存在的,所以振動系統最初所獲得的能量,在振動過程中因阻力不斷對系統做負功,使得系統的能量不斷減少,振動的強度逐漸減弱,振幅也就越來越小,以至於最後的停止振動,像這樣的因系統的力學能,由於摩擦及轉化成內能逐漸減少,振幅隨時間而減弱振動,稱為阻尼振動。 * 當阻尼較強時,阻尼振子幾乎沒有振動,振幅逐漸減小,達到穩定平衡,稱為過阻尼。 * 當阻尼較弱時,阻尼振子必須緩慢的經由多次振動逐漸把振幅減小,最後回到平衡位置,因此達成穩定平衡的時間較久,稱為欠阻尼。 * 另一種情形是阻尼振子以最平穩的速度,最短的時間達到穩定平衡,稱為臨界阻尼。。 * 另一種情形是阻尼振子以最平穩的速度,最短的時間達到穩定平衡,稱為臨界阻尼。 , المضاءلة أو التخميد هو أي تأثير، ناتج عن تالمضاءلة أو التخميد هو أي تأثير، ناتج عن تغيير خارجي أو موجود متأصل في نظام معين، يعمل على تقليل سعة الذبذبات، وفي الإلكترونيات يقال تخميد مطال التردد حيث يُقاس مطال التردد بالفولت أو بالأمبير. في الرياضيات التطبيقية، التخميد نموذج رياضي كقوة بسعة تتناسب مع سرعة الجسم ولكن في عكس اتجاهها. وفي آلات العزف الوترية مثل الجيتار والقيثارة والجيتار المعدني، التخميد يعنى إسكات صوت الوتر بعد صدور الصوت منه، بالضغط عليه بقاعدة الريشة أو بأي من أصابع اليد الموجودة على واحد أو أكثر من الأوتار الأخرى. ويكون النظام المثالي لنظام كتلة-زُنبورك-مخمـّد له كتلة ، ثابت الياي ، وثابت المخمـّد ، والتي يمكن حلها إلى:اي ، وثابت المخمـّد ، والتي يمكن حلها إلى: , In het algemene spraakgebruik is demping dIn het algemene spraakgebruik is demping de reductie van de sterkte van een of ander verschijnsel. Dat kan bijvoorbeeld geluiddemping zijn, of het toepassen van een sordino bij een strijkinstrument of een demper bij bepaalde blaasinstrumenten. Meer specifiek wordt van demping gesproken wanneer de sterkte van een trilling wordt afgeremd. Demping wordt bewust toegepast om de negatieve effecten van resonantie tegen te gaan. In de mechanica door schokdempers en in de elektronica door weerstanden.ers en in de elektronica door weerstanden. , O amortecimento, ou atrito interno, é um fO amortecimento, ou atrito interno, é um fenômeno físico observado em sistemas mecânicos que experimentam a dissipação de energia mecânica sob a forma de calor, ruído, atrito viscoso, por histerese ou atrito seco. A existência de pelo menos uma força não conservativa no sistema mecânico, realizando trabalho, implica uma perda de energia mecânica, portanto a ocorrência de amortecimento. É uma das propriedades mais sensíveis de materiais e estruturas, tanto em escala macro quanto microscópica, sendo extremamente sensível à presença de trincas e micro-trincas. O amortecimento determina a amplitude de vibração na ressonância em função do tempo e, o tempo de persistência da vibração após cessada a excitação.ncia da vibração após cessada a excitação. , En physique, l'amortissement d'un système En physique, l'amortissement d'un système est une atténuation de ses mouvements par dissipation de l'énergie qui les engendre. Il peut être lié de diverses manières à la vitesse. * Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur. Il est régi par la loi de Coulomb selon laquelle la force de frottement ne dépend pas de la vitesse. * Lorsque l'interface est lubrifiée l'énergie mécanique est encore transformée en chaleur mais la force de frottement devient proportionnelle à la vitesse selon la loi de la viscosité. On parle alors d'amortissement visqueux bien que cet effet linéaire apparaisse également dans des phénomènes plus ou moins éloignés. C'est l'aspect de la question essentiellement étudié dans cet article. * Un solide qui oscille dans un fluidee. * Un solide qui oscille dans un fluide , Затухающие колебания — колебания, энергия Затухающие колебания — колебания, энергия которых уменьшается с течением времени.Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата. В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.ние уровня сигнала до полной неслышимости. , Tłumienie (gaśnięcie) drgań – zmniejszanieTłumienie (gaśnięcie) drgań – zmniejszanie się amplitudy drgań swobodnych wraz z upływem czasu, związane ze stratami energii układu drgającego. Tłumienie obserwowane jest zarówno w układach mechanicznych jak elektrycznych. W przypadku fal biegnących tłumienie prowadzi do zmniejszania się amplitudy fali wraz ze wzrostem odległości od źródła, co wynika z rozpraszania energii. Za pomocą pojęcia tłumieniu drgań można też opisać przejście atomu lub cząsteczki ze stanu wzbudzonego do niższego stanu energetycznego, połączone z wypromieniowaniem kwantu energii promieniowania elektromagnetycznego.ergii promieniowania elektromagnetycznego. , Dämpning, inbromsning av en rörelse, i synnerhet en vibration. Om en oscillator inte är tillräckligt dämpad, kan resonanser uppstå med störande eller katastrofalt stora amplituder. , La amortiguación o amortiguamiento se defiLa amortiguación o amortiguamiento se define como la capacidad de un sistema o cuerpo para disipar energía cinética en otro tipo de energía. Típicamente los amortiguadores disipan la energía cinética en energía térmica y/o en energía plástica (e.g. atenuador de impactos), es decir, la función de un amortiguador es recibir, absorber y mitigar una fuerza tal, ya sea porque se ha dispersado o porque la energía se ha transformado de forma que la fuerza inicial se haya hecho menor. Cuanto mejor sea la amortiguación de la fuerza inicial, menor será la fuerza recibida sobre el punto final.á la fuerza recibida sobre el punto final. , En fiziko, amortizo estas efiko sur oscila sistemo, kiu reduktas la amplitudon de oscilo. , Damping is an influence within or upon an Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag (a liquid's viscosity can hinder an oscillatory system, causing it to slow down; see viscous damping) in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping.ction can cause or be a factor of damping. , Tlumené kmitání je mechanické kmitání, kteTlumené kmitání je mechanické kmitání, které po určité době ustává. V reálném světě vždy existuje tření a různé jiné odporové síly, které způsobují, že oscilující systém postupně ztrácí energii a jeho amplituda se s časem zmenšuje. Jakkoliv bychom se snažili zamezovat těmto nepříznivým vlivům, omezuje nás druhý zákon termodynamiky, podle kterého se mechanická energie postupně přeměňuje na vnitřní tepelnou energii. Závislost odporových sil od výchylky a její časové derivace může být obecně velmi složitá. V nejjednodušším modelu je odporová síla přímo úměrná první časové derivaci výchylky a působí proti narůstání výchylky. Takovému případu tlumení říkáme lineární tlumení a popisujeme ho vztahem . V případě tělesa na obrázku vpravo odporová síla vzduchu působí vždy proti směru pohybu tohoto thu působí vždy proti směru pohybu tohoto t
rdfs:label Esmorteïment , Amortissement physique , 減衰振動 , تخميد , Затухающие колебания , Maolú (fisic) , Tłumienie , Dämpning , Amortiguamiento , 阻尼 , Damping , Amortecimento , Згасні коливання , Demping , Tlumené kmitání , Amortizo
hide properties that link here 
http://dbpedia.org/resource/Damping_ratio + , http://dbpedia.org/resource/Critical_damping + , http://dbpedia.org/resource/Dampening + , http://dbpedia.org/resource/Underdamped + , http://dbpedia.org/resource/Critically_damped + , http://dbpedia.org/resource/Overdamped + , http://dbpedia.org/resource/Damping_Ratio + , http://dbpedia.org/resource/Critical_Damping + , http://dbpedia.org/resource/Damped + , http://dbpedia.org/resource/Damped_waves + , http://dbpedia.org/resource/Dampening_effect + , http://dbpedia.org/resource/Damping_constant + , http://dbpedia.org/resource/Underdamping + , http://dbpedia.org/resource/Over-damped + , http://dbpedia.org/resource/Over-damping + , http://dbpedia.org/resource/Over_damped + , http://dbpedia.org/resource/Overdamping + , http://dbpedia.org/resource/Undamped + , http://dbpedia.org/resource/Under-damping + , http://dbpedia.org/resource/Damped_sine_wave + , http://dbpedia.org/resource/Damped_wave + , http://dbpedia.org/resource/Damped_sinusoid + , http://dbpedia.org/resource/Damping_coefficient + , http://dbpedia.org/resource/Dampen + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Low-pass_filter + , http://dbpedia.org/resource/Analogue_filter + , http://dbpedia.org/resource/Ringing_%28signal%29 + , http://dbpedia.org/resource/Electrical_resonance + , http://dbpedia.org/resource/RLC_circuit + , http://dbpedia.org/resource/Impedance_analogy + , http://dbpedia.org/resource/Coulomb_damping + , http://dbpedia.org/resource/Left-hand_muting + , http://dbpedia.org/resource/Fractional_calculus + , http://dbpedia.org/resource/Polhode + , http://dbpedia.org/resource/Road-holding + , http://dbpedia.org/resource/Sound_level_meter + , http://dbpedia.org/resource/Damping_ratio + , http://dbpedia.org/resource/Coastal_hydrogeology + , http://dbpedia.org/resource/Dual-mass_flywheel + , http://dbpedia.org/resource/Wide-area_damping_control + , http://dbpedia.org/resource/Critical_damping + , http://dbpedia.org/resource/List_of_common_physics_notations + , http://dbpedia.org/resource/Mobility_analogy + , http://dbpedia.org/resource/Nikola_Tesla_electric_car_hoax + , http://dbpedia.org/resource/Anelasticity + , http://dbpedia.org/resource/Newbery%E2%80%93Vautin_chlorination_process + , http://dbpedia.org/resource/Mechanical_filter + , http://dbpedia.org/resource/Tacoma_Narrows_Bridge_%281940%29 + , http://dbpedia.org/resource/Dampening + , http://dbpedia.org/resource/Damped_wave_%28radio_transmission%29 + , http://dbpedia.org/resource/Underdamped + , http://dbpedia.org/resource/Conductor_gallop + , http://dbpedia.org/resource/LC_circuit + , http://dbpedia.org/resource/Recharge_oscillator + , http://dbpedia.org/resource/Vortex_Bladeless + , http://dbpedia.org/resource/Critically_damped + , http://dbpedia.org/resource/Overdamped + , http://dbpedia.org/resource/Damping_Ratio + , http://dbpedia.org/resource/Critical_Damping + , http://dbpedia.org/resource/Damped + , http://dbpedia.org/resource/Damped_waves + , http://dbpedia.org/resource/Dampening_effect + , http://dbpedia.org/resource/Damping_constant + , http://dbpedia.org/resource/Underdamping + , http://dbpedia.org/resource/Over-damped + , http://dbpedia.org/resource/Over-damping + , http://dbpedia.org/resource/Over_damped + , http://dbpedia.org/resource/Overdamping + , http://dbpedia.org/resource/Undamped + , http://dbpedia.org/resource/Under-damping + , http://dbpedia.org/resource/Active_suspension + , http://dbpedia.org/resource/Damped_sine_wave + , http://dbpedia.org/resource/Impulse_vector + , http://dbpedia.org/resource/Tumbler_screening_technique + , http://dbpedia.org/resource/Pendulum + , http://dbpedia.org/resource/Compliant_mechanism + , http://dbpedia.org/resource/Damped_wave + , http://dbpedia.org/resource/Bond_graph + , http://dbpedia.org/resource/Coefficient_diagram_method + , http://dbpedia.org/resource/Direct-drive_sim_racing_wheel + , http://dbpedia.org/resource/Longitudinal_stability + , http://dbpedia.org/resource/Damped_sinusoid + , http://dbpedia.org/resource/Damping_coefficient + , http://dbpedia.org/resource/Mechanical_amplifier + , http://dbpedia.org/resource/Arachnid_locomotion + , http://dbpedia.org/resource/Dampen + , http://dbpedia.org/resource/Rail_squeal + , http://dbpedia.org/resource/Klein%E2%80%93Kramers_equation + , http://dbpedia.org/resource/Damping_%28disambiguation%29 + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Damping + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Damping + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.